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Stochastic simulation model in Excel

Each iteration:

Cells show random values drawn from probability 

distributions

Spreadsheet calculates outputs and results stored

After many iterations:

Stored values for each output graphed, analyzed

Result represents approximate probability distribution 

of future outcomes



Monte Carlo simulation in 

spreadsheet models

 @RISK gives Excel the ability to allow 
certain quantities to be poorly known or 
variable

 3 capabilities of @RISK:

Creating input distributions for uncertain 
quantities

Running a simulation

Analyzing results



@RISK functions

 @RISK functions take the format: =RiskXxx()

 3 categories of @RISK functions:
 Distributions:

 RiskNormal(), RiskBinomial(), RiskTriang()

 Statistics (allow reporting into Excel sheet):
 RiskMean(), RiskCurrentIter(), RiskResultsGraph()

 Inputs (which effect actions on input distributions)
 RiskIndepc(), RiskCollect(), RiskTruncate()

 We will focus primarily on distributions



Introduction to @Risk

 Accessing @Risk in Excel

 Toolbars

 @Risk menus

 Model window

 Results window



Working example

 We’ll use Aaron’s Reed-Frost example 

from this morning to explore @Risk

Population = 101

 Initial number of susceptibles = 100

 Initial number of cases = 1

k ~ Binomial(4, 0.5 )
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Menus

 File

 Edit

 View

 Insert

 Simulation

 Fitting/Results

 Graph

 Window

 Help



Model window

 List of inputs & outputs in current model

 Insert menu

 Distribution fitting (we will use in later 

example)



Results window

 List of inputs/outputs

 Summary statistics

 Insert menu

Detailed statistics

Data

Graph



Creating input 

distributions



Review of probability distributions

Parametric distributions:
Binomial Poisson Hypergeometric

Gamma NegBin Normal

Empirical distributions (useful for data, expert 
opinion)

PERT Triangle Beta

General Discrete Uniform

Bootstrapping (sampling from existing data)

Knowing which distribution to use requires working 
knowledge of probability theory



Review: Empirical probability distributions
a) Triangle distributions
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b) Uniform distributions
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c) PERT distributions
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d) A General distribution
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e) A Cumulative distribution
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f) A Discrete distribution
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Review: parametric distributions in 3 stochastic 
processes

Central Limit 
Theorem results 

apply here:

Binomial Process

Poisson Process Hypergeometric Process

Number of 

trials n 

(NegBin)

Number of 

successes s 

(Binomial)

Probability of 

success p 

(Beta)

Exposure time t 

(Gamma)

Number of 

observations 

α

(Poisson)

Mean number 

of events per 

unit time γ

(Gamma)

Number of 

trials n 

(InvHyperGeo)

Number of 

successes s 

(HyperGeo)

Population M, 
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(successes) D



Quick summary of some parametric 

distributions
Binomial process distributions

Quantity Formula

Number of successes s=Binomial(n,p)

Probability of success p=Beta(s+1,n-s+1)

Number of trials n=s+NegBin(s,p) (last trial is a success)

n=s+NegBin(s+1,p) (last trial is not known)

Poisson process distributions

Number of events α=Poisson(λt)

Mean number of events per unit exposure λ=Gamma(α,1/t)

Time until first event t1=Exponential(1/λ)

Time until first α events tα=Gamma(α,1/ λ)

Hypergeometric process distributions

Number of successes (subpopulation) in sample s=HyperGeo(n,D,M)

Number of samples to observe s successes n=s+InvHyp(s,D,M)



Creating input distributions

 Select appropriate distribution

Fit distributions to data (if data available!)

Use distribution that is mathematically 
appropriate

Handy tools:
 BetaBuster 

 Generates Beta parameters for expert opinion on Se, Sp, 
prevalence or other proportions

 http://www.epi.ucdavis.edu/diagnostictests/betabuster.html



Example 1:

 In an adequate contact, the probability of 

transmitting Disease A from an infected to 

susceptible animal is 0.4.

 A single infected animal has 40 adequate contacts 

with susceptible animals during its infectious period

 On average, how many animals will an infected 

animal infect?

 If 100 infected animals are released, what’s the 

fewest number of new infections from one infected 

animal?  What’s the highest number of new infections 

per animal? 



Example 1

 Working through the problem

What probability distribution to use?

What are the parameters for the distribution?

How many iterations should we run?

 Insert distribution using @Risk

Run iterations

Evaluate output



Example 2

 We think that the probability of infection 
given adequate contact is 0.4, but when 
we asked experts, they said it was most 
likely 0.4, but was definitely less than 0.8

What parameter does this affect?

 Is this uncertainty or variability?

How can we incorporate expert opinion into 
our model?



Example 3

 The average number of adequate contacts 

is 40, but anecdotally it ranges from 10 to 

60 adequate contacts.

How does this change our results?

 What distribution(s) could we use?

 How do we add this to our simulation model?



Example 4

 A graduate student collected daily data on 

the number of adequate contacts between 

40 animals.

How can we incorporate this data into our 

model?

 Do we need any other information?

 Fit a distribution

 Bootstrap



Distribution fitting

 Distribution fitting

Methods of comparison
 Visual

 Difference

 P-P and Q-Q

Statistics and Goodness of Fit
 Statistics: Descriptives on data and distribution

 GOF: Results of Chi-square, Anderson-Darling, 
and Kolmogorov-Smirnov testing



Comparing results

 Did incorporation of uncertainty about 

number of adequate contacts change our 

estimates of the numbers infected?



Constant number of adequate contacts (40)
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Triangular distribution of adequate contacts (10,40,60)
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Bootstrapped distribution of adequate contacts
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