Preview of Tuesday: Introduction to stochastic modeling

Aaron Reeves, Animal Population Health Institute College of Veterinary Medicine and Biomedical Sciences Colorado State University, Fort Collins, Colorado

Today in review (I)

The epidemic model developed by Reed and Frost represents a class of mathematical models called chain binomial models

We have not yet discussed what a "chain binomial model" is

- The Reed-Frost model operates in discrete time units, where each time period is equal to the length of the average serial interval (≈ average incubation period) for the disease being modeled
- The number of cases in a particular time period can be calculated based on the number of cases from an earlier time period
- This calculation also uses the average number of adequate contacts (designated k) that each individual has with others in the population during a single time period

The Reed-Frost equation (more review)

 $C_{t+1} = S_t (1 - q^{C_t})$ where: t indicates the time period C = # of cases (infectious individuals) S = # of susceptible individuals q = prob. of avoiding adequate contact q = 1 - (prob. of adequate contact) = 1 - pp = k/(N-1)where: k = average number of adequate contacts by an individual in a single time period N = size of the population

Today in review (II)

Statistical tests, like the chi-square test or G test, can be used to assess the fit of results predicted by a model to actual outbreak data

The goodness of fit of a model can be optimized by selecting an appropriate value for k

In the context of the basic Reed-Frost model, k is equivalent to R₀

Deterministic modeling

- The Reed-Frost model, as constructed today, is a *deterministic* model
 - The model produces an estimate of the average number of new cases per time period
 - There is a closed form solution for the Reed-Frost function
 - There is no measure of variability or uncertainty connected with the result

Real life is rarely so simple. For example...

How many ways can you toss four coins?

- In four coin tosses, we expect that the most common result will be two heads
 - This would be the result of a deterministic model
- Two heads is not the only possible outcome: chance plays a role
 - A stochastic model will account for the role of chance

Stochastic models

- Stochasticity refers to the random or variable nature of events
- Characteristics of biological systems are often variable (usually within limits)
 - e.g., daily milk production
- When modeling disease, it is often useful to account for this natural variability
- Models may also include variability simply because little is known about a system

Coming up tomorrow

- We will continue to work with the Reed-Frost framework, incorporating variability or stochasticity into the basic model
- We will look at the benefits of stochastic modeling
- We will be introduced to some computational tools for creating stochastic models
- We will briefly examine a different approach to disease modeling, which will allow us to create much more complex models