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A brief review

 The epidemic model developed by Reed and Frost 
represents a class of mathematical models called chain 
binomial models

 We have not yet discussed what a “chain binomial model” is

 The Reed-Frost model operates in discrete time units, where 
each time period is equal to the length of the average serial 
interval (≈ average incubation period) for the disease being 
modeled

 The number of cases in a particular time period can be 
calculated based on the number of cases from an earlier time 
period

 This calculation also uses the average number of adequate 
contacts (designated k) that each individual has with others in 
the population during a single time period 
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The Reed-Frost equation (more review)

 Ct+1 = St (1 – q )

where:

t indicates the time period (constant duration)

C = # of cases (infectious individuals)

S = # of susceptible individuals (constant)

q = prob. of avoiding adequate contact (constant)

 q = 1 – (prob. of adequate contact) = 1 – p

 p = k /(N – 1)

where:

k = average number of adequate contacts by an 

individual in a single time period (constant)

N = size of the population (constant)

Ct
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A closer look at k (I)

 The number of adequate contacts that an individual 

has in a time period could be calculated as follows:
(# of all contacts in a time period) 

× (probability that a contact – if it occurs – will be adequate)

 Note that this probability does not represent the same thing as p

 Let’s denote this symbolically as:

k = kA × h

 Now let’s consider an example in which every 

individual will have a total of exactly four contacts per 

period, and in which each contact that occurs has a 

50% chance of being adequate:

kA = 4, h = 0.5, k = 4 × 0.5 = 2
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A closer look at k (II)

Based on this example:

 There will be 4 contacts

 Each contact has a 50% chance of 

being adequate

 All recipients are susceptible, so 

every adequate contact will be 

effective

 We expect that there will be 2 

infected individuals in the next time 

period

 The deterministic model we’ve used 

so far will always produce this result

 But this is not the only possible 

result

X

X
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A closer look at k (III)

 Of the two components of k…

 kA, the total number of contacts

 h, the probability that a contact will be adequate

 …we could allow k to vary by incorporating 

stochasticity for the total number of 

contacts, and/or the probability that a 

contact will be adequate

 Let’s consider the latter situation first…
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Adequate contact as a binomial process

 Contact could be modeled as a 

process with two possible outcomes

 Either contact happens, or it doesn’t

 A contact has a certain probability of 

being adequate

 In our example, this probability is 50%

 50% is an arbitrary choice: the two 

outcomes do not have to have an 

equal probability

X

X
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A simple binomial process

etc.
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Characteristics of binomial processes

 A binomial process is one in which:
 Each trial (coin toss; contact) has two possible outcomes 

(heads or tails; infection or no infection)

 The outcome event can be defined as a success (heads; 
infection) or a failure (tails; no infection)

 Each trial has the same probability of success (0.5 
probability of heads; probability of infection of h)

 All trials are independent of one another (the result of one 
coin toss has no influence on the result of the next toss)

 The number of successful events that might occur 
in some number of trials follows a binomial 
distribution
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Some binomial distributions
Binomial( 4, 0.5 )
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Binomial( 10, 0.5 )
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Binomial( 5, 0.2 )
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Binomial( 20, 0.04 )
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Calculating a binomial probability

 To calculate the probability of x successes in n trials, where each 

trial has the probability of success p:

 For example: what is the probability of getting exactly 2 heads in 5 

tosses of a fair coin?

 n = 5, x = 2, p = 0.5

(5×4×3×2×1)

(2×1)(3×2×1)
(0.5)2(1-0.5)3 = 

120

(2×6)
(0.313) = 0.3125 

 In Excel, use the following formula: =BINOMDIST( 2, 5, 0.5, false )
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An aside: The origin of the term “chain 
binomial”

 The (deterministic) Reed-Frost formula, once again: 

Ct+1 = St (1 – q )

 The probability of having exactly Ct+1 cases in time 

period t+1 can be calculated with the binomial function1, 

i.e., what is the probability of Ct+1 successes in St trials, 

where the probability of success is (1 – q )?

Ct

Ct

 A similar calculation could be performed for each time 
period, resulting in a sequence or chain of binomial 
functions

1Abbey, 1952
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So, where were we?

 Let’s modify our basic Reed-Frost model so 
that k varies for each time period, 
according to a binomial distribution 

 k is no longer constant

 Consequently, neither will p or q

 The result will be an epidemic that is 
possible under the conditions we’ve 
specified

 It probably won’t be the “average” epidemic
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Results of a Reed-Frost model where k is 
not constant: Calculating p and q

 Like k, p, and q vary for each time period 

 p = k/(N-1), but k is different at each step

Time Cases Immune Susceptible k p q

0 1 0 100 2 0.02 0.98

1 2 1 98 2 0.02 0.98

2 4 3 94 4 0.04 0.96

3 14 7 80 3 0.03 0.97

4 27 21 53 1 0.01 0.99

5 13 48 40 2 0.02 0.98

6 9 61 31 3 0.03 0.97

7 7 70 24 1 0.01 0.99

8 2 78 21 3 0.03 0.97

9 1 79 21 1 0.01 0.99

10 0 80 21 1 0.01 0.99

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 k  Binomial( 4, 0.5 )
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Results of a Reed-Frost model where k is not constant: 
Calculating the number of new cases

 The number of cases depends on a different q value for 
each time period

Time Cases Immune Susceptible k p q

0 1 0 100 2 0.02 0.98

1 2 1 98 2 0.02 0.98

2 4 3 94 4 0.04 0.96

3 14 7 80 3 0.03 0.97

4 27 21 53 1 0.01 0.99

5 13 48 40 2 0.02 0.98

6 9 61 31 3 0.03 0.97

7 7 70 24 1 0.01 0.99

8 2 78 21 3 0.03 0.97

9 1 79 21 1 0.01 0.99

10 0 80 21 1 0.01 0.99

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 k  Binomial( 4, 0.5 )
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Results of a Reed-Frost model where k is 
not constant (I)

 What is the “hidden assumption” in this model?

Time Cases Immune Susceptible k p q

0 1 0 100 2 0.02 0.98

1 2 1 98 2 0.02 0.98

2 4 3 94 4 0.04 0.96

3 14 7 80 3 0.03 0.97

4 27 21 53 1 0.01 0.99

5 13 48 40 2 0.02 0.98

6 9 61 31 3 0.03 0.97

7 7 70 24 1 0.01 0.99

8 2 78 21 3 0.03 0.97

9 1 79 21 1 0.01 0.99

10 0 80 21 1 0.01 0.99

TOTAL 80

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 k  Binomial( 4, 0.5 )



Stochastic disease models 17
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Results of a Reed-Frost model where k is 
not constant (II)

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 k  Binomial( 4, 0.5 )

Deterministic model

Stochastic model
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What does the stochastic model tell us so 
far?

 Not much

 So let’s do it again, and see what happens:

 Repeat the same model, using a different 

sequence of values for k (which still varies 

according to the same binomial distribution)
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Results of a Reed-Frost model where k is 
not constant (II)

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 k  Binomial( 4, 0.5 )

Deterministic model

Stochastic model (1)

Stochastic model (2)

Time Cases k

0 1 3

1 3 2

2 6 2

3 10 1

4 8 2

5 11 3

6 17 3

7 19 4

8 14 3

9 4 2

10 1 2

11 0 1

TOTAL 94



Stochastic disease models 20

How is our stochastic model useful?

 Every time we “run” the stochastic model, 
we get a different result
 This is not a bug: it’s a feature

 The result of a single “run” (also called an 
iteration or a realization) of a stochastic 
model is of little value

 When results of many iterations are 
considered in aggregate, we learn more 
than we would from any single run (even of 
the deterministic model)
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Our stochastic model is a Monte Carlo 
simulation 

 The system (spread of disease) is described by 
stochastic processes and probability density functions 
(e.g., the binomial function)

 One or more parameters (so far, just k) is allowed to 
vary “randomly” by sampling from the specified function

 The results of the simulation are expressed as a 
distribution, which shows the range of possible 
outcomes

 Monte Carlo methods can be used in situations where it 
is very difficult or impossible to arrive at an analytical 
solution 
 Complex combinations of probabilities and distributions can be 

used simultaneously
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stochastic model

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 k  Binomial( 4, 0.5 )

 10000 model iterations

 What is the range in 
severity of possible 
outbreaks?

 Why is this 
distribution bimodal?

 Why is the mean from 
the stochastic model 
(~57) so much lower 
than the mean 
predicated by the 
deterministic model 
(~82)?
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Time Cases Immune Susceptible k p q

0 1 0 100 2 0.02 0.98

1 2 1 98 2 0.02 0.98

2 4 3 94 3 0.03 0.97

3 10 7 84 1 0.01 0.99

4 8 17 75 0 0 1

5 0 25 75

Total 25

Deterministic model

Stochastic model

 It is not realistic that every individual will 
have the same number of adequate 
contacts in the same time period

 It may be the best that we can do in a 
spreadsheet 

 More detailed computer programs can be 
written in which the number of contacts is 
allowed to vary per case

 One such model1 produced a mean 
number of total cases of 78.7, much 
closer to the expected mean of 81.9 
from the deterministic model

1Thanks to Shaun Case
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So… what else can we change?

 Recall that we said that the total number of 

contacts per time period (kA) was always 4

 Could we improve the realism of our model 

by allowing kA to vary?

 If yes, how should we let it vary?



Stochastic disease models 25

The Poisson distribution

 Poisson distributions

are used to model 

the number of events 

that occur within a 

given period of time

 A Poisson distribution 

is specified by giving 

its mean

Probabilities of n  events in a given time 

period, following a Poisson distribution 

with a mean of 4
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Characteristics of Poisson processes

 The probability of an event (a contact) 

occurring over some time interval is 

constant

 This probability is independent of the 

number of events (contacts) that might 

have occurred in the past

 Duration between two events (contacts) is 

independent of the duration between any 

other two events
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Stochastic models in which kA varies

 One option: let kA vary according to a 

Poisson distribution, and leave h fixed at 

0.5:

 k = Poisson( 4 ) × 0.5

 A second option: let k vary based on both 

the Poisson and Binomial distributions:

 k = Binomial( Poisson( 4 ), 0.5 )

 Try them on your own, and see what 

happens…
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Assumptions about time in a Reed-Frost 
model

 All models we’ve used so far proceed in time 
steps equal in duration to the average serial 
interval or incubation period

 Yesterday, we modeled a measles outbreak 
using a 12-day incubation period for the disease

 The incubation period for every individual with 
measles is always 12 days

 Could we allow the incubation period to vary?
 Yes (although not in a spreadsheet model), if we 

know (or have an idea about) the distribution of 
measles incubation periods
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Dealing with distributions

 We said that systems in Monte Carlo 
models are described by probability density
(or probability mass) functions

 We’ve now seen two such functions: the 
Binomial and the Poisson

 Dr. Hill will talk more about producing and 
using probability density functions later 
today

 To wrap up this session, we’ll look at just a 
few useful probability density functions
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Distributions and probability density 
functions

 Any kind of frequency data can be expressed as 

a probability density function

 Data may be in discrete units 

 Examples: number of heads in five coin tosses; days that an 

infected individual is incubating disease

 Discrete distributions have probability mass functions

 Data may be in continuous units

 Examples: height of four-year-old boys; milk production by 

dairy cows

 Continuous distributions have probability density functions
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An example: Populations of swine 
operations in Iowa1
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Several useful probability density 
functions

 Uniform

 Triangular

 Normal

 Exponential

 Additional probability density functions are 

described by Hill and Reeves (2006), Vose 

(2000), and in the @RISK documentation
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The Uniform distribution

 This distribution is defined 
by its minimum and 
maximum value

 During sampling, all values 
between this minimum and 
maximum (inclusive) have 
an equal probability of being 
selected
 The probability of selecting a 

value less than the minimum 
or greater than the maximum 
is 0

 In models, Uniform 
distributions are generally 
used when very little 
information is available 
about a process or 
parameter

Uniform(5, 8)
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The Triangular distribution

 This distribution is defined 
by its minimum, most likely, 
and maximum value

 The distribution may be 
symmetrical or skewed to 
either the right or left

 During sampling, the most 
likely value has the highest 
probability of being selected

 Triangular distributions are 
used for rough modeling, 
where limited data is 
available, or where expert 
opinion is used to define 
distributions

Triang(5, 6, 8)
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The Normal (Gaussian) distribution

 This distribution is defined 
by its mean and standard 
deviation

 Normal distributions are 
always symmetrical about 
their means

 Normal distributions are 
theoretically infinite in 
extent

 Many naturally occurring 
variables follow a Normal 
distribution

 Under the right conditions, 
many other distributions 
can be approximated with 
a Normal distribution

Normal(6.25, 1.055)
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The Exponential distribution

 An Exponential distribution 
is defined by its mean

 Normal distributions are 
markedly asymmetrical

 Many differential calculus 
models rely on an 
exponential “rate of decay”

 If an event occurs with a 
constant probability per 
time unit, the time 
between consecutive 
events can be modeled 
with an Exponential 
distribution

Expon(6.25)
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Summary

 The Reed-Frost spreadsheet model can be 
modified to incorporate stochasticity

 Stochastic (Monte Carlo) models produce not just 
one result, but a distribution of possible results

 This distribution can be more informative than, for 
example, a single predicted value from a 
deterministic model

 Monte Carlo models are driven by probability 
density functions, which are used to represent 
variability and/or uncertainty about components of 
the system being modeled
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Coming up…

 While the Reed-Frost model is a useful place to 
begin to introduce Monte Carlo methods, the 
degree of stochasticity that can be incorporated is 
limited, especially when used in a spreadsheet

 In the next session, we will examine a framework 
for more complex models that offers more 
opportunities for use of probabilistic methods

 This framework, the state transition model, will 
provide the basis for very detailed models, 
including those that we will create with the North 
American Animal Disease Spread Model
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Recommended reading
 Carpenter, T.E., 1988. Stochastic epidemiologic modeling using a 

microcomputer spreadsheet package. Preventive Veterinary 
Medicine 5: 159–168. (Slightly dated, but still a useful 
demonstration of stochastic Reed-Frost modeling in a spreadsheet)

 Computational Science Education Project.1995. Introduction to 
Monte Carlo Methods.  An electronic book available at 
http://www.phy.ornl.gov/csep/mc/mc.html.  (A thorough introduction 
to the principles and algorithms used for Monte Carlo modeling)

 Vose, D.  2000.  Risk Analysis: A Quantitative Guide, 2nd ed.  New 
York: John Wiley & Sons. (Includes a very useful chapter on 
probability density functions and their applications)

http://www.phy.ornl.gov/csep/mc/mc.html
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