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Disease states (I)

 Virtually all models incorporate the concept of 

disease states

 At any given point in time, every individual in a 

population exists in a disease state (which may be 

absence of disease)

 Individuals cannot have more than one disease 

state

 Upon infection, individuals progress through a 

series of disease states in a predictable manner
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Disease states (II)

Susceptible Latent

Subclinically

infectious

Clinically

infectious

Immune/

Recovered

tA tB tC tD

Infectious period

Incubation period

Serial interval

time

tA: Infection occurs

tB: Latency to infectious transition

tC: Symptoms (clinical signs) appear

tD: Individual is no longer infectious

Modified from Daley and Gani, 1999

Infected period
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The serial interval

Susceptible Latent Infectious

Immune/

Recovered

tA1 tB1 tD1

Serial interval

time

Individual 1

Susceptible Latent Infectious

tA2 tB2

time

Individual 2

Infection!

 Defined as the duration between the time when 
an individual is infected, and the time when that 
individual first infects another
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SIR: A simple disease model

 S = Susceptible

 I = Infectious

 R = Recovered or Removed

 Equivalent Reed-Frost notation:

 S = Susceptible = Susceptible in SIR

 C = Case or Contagious = Infectious in SIR

 I = Immune = Recovered in SIR

Size of the population = # Susceptible + # Cases + # Immune

Susceptible Infectious Recovered
Infection

Natural

progression
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Disease in a simple population: Before 
infection

Some assumptions about the population 

and the disease:

 The population is closed: individuals 

neither enter nor leave

 Every individual in the population is 

equally susceptible to disease

 Random mixing occurs within the 

population: individuals are equally likely 

to come into contact with any other 

individual

 Disease spreads only by direct contact

 An infected individual is a “case” for 1 

time period

 Immunity lasts indefinitely
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Disease in a simple population: Initial 
infection (time period 0)

 The number of cases C = 1

 The number of susceptibles S = 4

 The total population size N = 5

 How will disease progress in this 

population?

 The same question, rephrased: how 

many cases will there be in each 

subsequent time period?

 The answer will depend on the 

probability of adequate contact
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Adequate versus effective contact (I)

 Adequate contact: a contact between individuals 
that would lead to the transmission of disease, if 
one individual is infectious and the other is 
susceptible

 Effective contact: a contact between individuals 
that leads to disease
 An adequate contact will be effective if it occurs between 

an infectious and a susceptible individual

 Adequate contact will not be effective if:
 Both individuals are infectious

 Both individuals are susceptible

 One is infectious, the other is immune

 etc.
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Probability of adequate contact (I)

 Because the population is 

homogenously mixing, the 

probability that an individual will 

have adequate contact with another 

individual in the population is 

constant

 We’ll use the symbol p to indicate 

this probability

 The probability that adequate 

contact will not occur between any 

two individuals is (1 – p), which we’ll 

call q

 Suppose p = 0.4…

p

p

p

p
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 If p = 0.4…

 The probability that any particular 

individual will receive adequate 

contact (and will be infected) is 0.4

 Equivalently, the proportion of the 

population that will receive 

adequate contact is 0.4

 The probability that any particular 

individual will avoid adequate 

contact (equivalently, the proportion 

of the population that will avoid 

adequate contact) is 

q = 1 – 0.4 = 0.6

Probability of adequate contact (II)

p

p

p

p
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 If p = 0.4…

 In a population of 5 with 1 infectious 

individual, there are 4 individuals which 

can receive adequate contact from the 

1 infected

 Of those 4, we expect on average that 

4 × 0.4 = 1.6 individuals will have 

adequate contact

 Because all 4 are susceptible, we 

expect that 1.6 will become infected 

(contact is effective, as well as 

adequate)

 For convenience and simplicity, we’ll 

round this to 2 for now

X

X

Probability of adequate contact (III)
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Time passes…
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Disease states in time period 1

 The individual which was 

infectious in time period 0 is now 

immune (recovered)

 The two individuals which 

received adequate contact in 

time period 0 are now infectious
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Disease spread in time period 1

 As before, p = 0.4 

(remember: p is constant!)

 So…

 The probability that any single 

individual will avoid adequate 

contact is 

q = 1 – 0.4 = 0.6

 Of 2 remaining susceptibles, 

we expect on average that 

2 × 0.4 = 0.8 

will receive adequate contact

 Right?

p

p

p p
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No, that’s not right!!

 The probability that any single 

individual will avoid adequate 

contact from one possible source is 

1 – 0.4 = 0.6

 The probability that any single 

individual will avoid adequate 

contact from both possible sources

is (1 – 0.4) × (1 – 0.4) = 0.36

 Of 2 susceptibles, we expect on 

average that there would be

2 × (1 – 0.36) = 1.28 new cases
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Adequate versus effective contact (II)

 Note that the expected number of 

new cases in this time period (1.28) 

is not the same as the expected 

number of new cases in the previous 

time period (1.6), even though the 

probability of adequate contact is 

unchanged

 The ratio of infectious to susceptible 

individuals is different

 Some adequate contacts are not 

effective
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A slightly less simple population (I)

 At time 0: 1 case, 100 susceptibles

 Probability of adequate contact p = 0.04

 Probability of avoiding adequate contact from 1 infectious individual:
q = (1 – 0.4) = 0.96

 Probability of avoiding all adequate contacts:
q(# cases) = (0.96)1 = 0.96

 Probability of having at least 1 adequate contact:
1 – q(# cases) = 1 – 0.96 = 0.04

 Number of expected new cases in the next time period:
(# susceptibles) × (Probability of having at least 1 adequate contact) =
100 × 0.04 = 4 

Time 

period Cases Immune Susceptible

0 1 0 100

1 100 × [1 - (1-0.04)] = 4 1 96
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A slightly less simple population (II)

 At time 1: 4 cases, 96 susceptibles

 Probability of adequate contact p = 0.04 (Unchanged!)

 Probability of avoiding adequate contact from 1 infectious individual:
q = (1 – 0.4) = 0.96

 Probability of avoiding all adequate contacts:
q(# cases) = (0.96)4 = 0.85

 Probability of having at least 1 adequate contact:
1 – q(# cases) = 1 – 0.85 = 0.15

 Number of expected new cases in the next time period:
(# susceptibles) × (Probability of having at least 1 adequate contact) =
96 × 0.15 = 14

Time 

period Cases Immune Susceptible

1 100 × [1 - (1-0.04)] = 4 1 96

2 96 × {1 - [(1-0.04) × (1-0.04) × (1-0.04) × (1-0.04)]}  = 14 5 82
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A slightly less simple population (III)

Time 

period Cases Immune Susceptible

0 1 0 100

1 100 × [1 - (1-0.04)] = 4 1 96

2 96 × {1 - [(1-0.04) × (1-0.04) × (1-0.04) × (1-0.04)]}  = 14 5 82

3 82  × [1-(1-0.04)14] = 36 19 46

4 46 × [1-(0.9636)] = 35 56 10

5 10  × [1-(0.9635)] = 8 90 3

6 2  × [1-(0.968)] = 1 98 2

7 1  × [1-(0.961)] = 0 99 2
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The Reed-Frost model in mathematical 
notation

 The probability of avoiding adequate contact from any 

single source is:

1 - p = q

 The probability of avoiding all adequate contact is:

(1 - p)C = qC

 The probability of not avoiding all adequate contact (i.e., 

the probability of at least one adequate contact) is:

(1 - qC)

 The expected number of cases in the next time period 

is:

Ct+1 = St(1 - q )Ct
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Time in a Reed-Frost model

 p is the probability that adequate contact will occur 
between two individuals during a single time period

 The model proceeds in time steps equal in length to a 
typical or average serial interval for the disease

 The duration of the average incubation period is often used 
for this serial interval

 The number of susceptibles, cases, and immune 
individuals in any one time period is dependent on those 
numbers from the previous time period

 After a time interval has passed, a case individual 
recovers, and is immune from re-infection

 In a simple SIR model, immunity after infection is assumed 
to last forever
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Model-predicted cases per time period
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Results of a simple Reed-Frost model

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02  q = 0.98

Time Cases Immune Susceptible

0 1 0 100

1 2 1 98

2 4 3 94

3 7 7 87

4 12 14 75

5 16 26 60

6 16 41 43

7 12 58 31

8 7 70 24

9 3 77 21

10 1 80 20

11 1 81 19

12 0 82 19

 Does this chart show 

prevalence or incidence?
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Model-predicted cases per time period
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The Reed-Frost model: Calculating the 
number of new cases

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02  q = 0.98

Time Cases Immune Susceptible

0 1 0 100

1 2 1 98

2 4 3 94

3 7 7 87

4 12 14 75

5 16 26 60

6 16 41 43

7 12 58 31

8 7 70 24

9 3 77 21

10 1 80 20

11 1 81 19

12 0 82 19
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Model-predicted cases per time period
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The Reed-Frost model: Calculating the 
number of immune individuals

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02  q = 0.98

Time Cases Immune Susceptible

0 1 0 100

1 2 1 98

2 4 3 94

3 7 7 87

4 12 14 75

5 16 26 60

6 16 41 43

7 12 58 31

8 7 70 24

9 3 77 21

10 1 80 20

11 1 81 19

12 0 82 19
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Some assumptions of the basic Reed-Frost 
model
 The population is closed, homogenously mixing, and does 

not change in size

 Disease does not result in death

 All disease spread occurs by direct contact

 All susceptible individuals are equally likely to be infected

 All infected individuals are equally likely to spread infection

 The infectious period is short relative to the incubation period

 Animals infected in a particular time period become infectious 
in the following time period

 Individuals are infectious for only one time period

 Immunity after infection is complete and permanent
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Dissecting the probability of adequate 
contact

 The probability of adequate contact (p) can be 
calculated as follows:
p = k / (N - 1)
where:
 N = the size of the population

 k = the average number of adequate contacts made by an 
individual during a single time period

 Estimates of k produce estimates of p, and vice 
versa

 p and k are difficult to measure directly, but can 
be estimated from real outbreak data
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Assessing model fit to outbreak data (I)

 Model parameters:

 N = 101

 C0 = 1  S0 = 100

 k = 5  p = 0.05, 

q = 0.95

Time Observed Predicted

0 1 1.00

1 3 5.00

2 10 21.49

3 35 49.10

4 35 22.44

5 7 1.35

6 1 0.04

7 1 0

Observed and model-predicted cases per 

time period

0
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50

60

0 1 2 3 4 5 6 7 8

Time period

C
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Observed cases

Predicted cases
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The chi-square goodness of fit test

 The chi-square test can be used to determine the goodness 
of fit of an observed distribution to a theoretical or expected 
distribution

 Calculating the chi-square statistic:

2 = 

 The smaller the value of the chi-square statistic, the better 
the fit

 Degrees of freedom: df = (# of categories) - 1

 Level of significance: we’ll use  = 0.05

 The hypothesis that will be tested:
H0: The observed values fit the expected distribution
HA: Observations in at least one category do not fit the 
expected distribution

(Observed – Expected)2

(Expected)
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Assessing model fit to outbreak data (II)

 Calculating the chi-square value:

 Critical value of the 2 distribution with df = 5,  = 0.05:

11.07

 Critical value < 2 statistic  H0 is rejected (p < 0.00001)

 The model is not a good fit to the observed data

Time period Observed Expected (Obs – Exp)2 / Exp

0 1 1.00

1 3 5.00 0.80

2 10 21.49 6.14

3 35 49.10 4.05

4 35 22.44 7.02

5 7 1.35 23.77

6 1 0.04 22.15

2: 63.93
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Optimizing model fit to observed data (I)

 Using the Solver add-in in Microsoft Excel, 

the value of k (and p) that optimizes the fit 

of the observed data to the model-predicted 

values

 In this case, the Solver produces the 

following solution:

k = 3.62 p = 0.0362, q = 0.9638
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Observed and model-predicted cases per 

time period
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Time Obs. Exp. (Obs - Exp)2/Exp

0 1 1.00

1 3 3.62 0.10

2 10 12.02 0.34

3 35 30.18 0.77

4 35 36.36 0.05

5 7 13.16 2.88

6 1 1.80 0.35

7 1 0.18 3.61

2: 8.11

Optimizing model fit to observed data (II)

 Critical value (df = 6,  = 0.05): 12.59

 H0 cannot be rejected (p = 0.23)Observed cases

Predicted cases
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What is k?

 k is the typical or average number of adequate contacts each 
individual has with others in the population during a single 
time period

 If the population is entirely susceptible to disease, then every 
adequate contact will be effective

  k is the average number of secondary cases that will arise 
from one initially infectious case during a single time period

 The basic Reed-Frost model assumes that individuals are 
infectious for no more than 1 time period

  k is the average number of secondary cases that will arise 
from one initially infectious case

 In the basic Reed-Frost model, k = R0

 When we estimate k in a basic Reed-Frost model (as we’ve 
just done), we are estimating R0
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A note about the 2 test

 As a rule of thumb, every cell (observed 
value and expected value) should be at 
least 5 for the 2 test to be valid

 In the example just shown, this rule was 
violated

 We will continue to violate it, for purposes 
of illustration

 It would be more appropriate to use a 
different test (e.g., the G test: Sokal and 
Rohlf, 1994)
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Revisiting some assumptions of the 
Reed-Frost model

 Assumption: There are three disease states: 
susceptible, infectious, and recovered
 But many diseases have additional states, e.g., a latent 

state

 Assumption: Each disease state has the same 
duration (1 time period)
 But some diseases may have prolonged latent or 

infectious stages

 Assumption: Immunity after infection lasts forever
 But for some diseases, immunity wanes over time, and 

individuals become susceptible to re-infection

 For some diseases, there is no lasting immunity, and 
individuals become susceptible again very soon after 
recovery
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If the existing model is too simplistic, 
build a more realistic model…
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Modified Reed-Frost models: SLIR (I)

 Incorporating a latent period introduces a delay or 
lag between the time of infection and the time that 
individuals become infectious

 In the relatively simple Reed-Frost framework, 
that delay lasts for some multiple of the time 
period

 These models are sometimes referred to as SEIR
models, where the E stands for “exposed”
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Modified Reed-Frost models: SLIR (II)
 Upon infection, an individual will be latent for some specified 

number of time periods before becoming infectious itself

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Latency lasts for 2 time periods

Time Latent incidence Latent prevalence Cases Immune Susceptible

0 0 0 1 0 100

1 2 2 0 1 98

2 0 2 0 1 98

3 0 0 2 1 98

4 4 4 0 3 94

5 0 4 0 3 94

6 0 0 4 3 94

7 7 7 0 7 87

8 0 7 0 7 87

9 0 0 7 7 87
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Incidence and prevalence in an SLIR 
model
 Because of the lag, incidence is not necessarily equal to prevalence

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Latency lasts for 2 time periods

Time Latent incidence Latent prevalence Cases Immune Susceptible

0 0 0 1 0 100

1 2 2 0 1 98

2 0 2 0 1 98

3 0 0 2 1 98

4 4 4 0 3 94

5 0 4 0 3 94

6 0 0 4 3 94

7 7 7 0 7 87

8 0 7 0 7 87

9 0 0 7 7 87
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Reed-Frost SLIR: Calculating incidence of 
latent individuals
 The number of newly infected individuals is calculated based on the 

previous numbers of infectious cases and susceptible individuals, 
just as before

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Latency lasts for 2 time periods

Time Latent incidence Latent prevalence Cases Immune Susceptible

0 0 0 1 0 100

1 2 2 0 1 98

2 0 2 0 1 98

3 0 0 2 1 98

4 4 4 0 3 94

5 0 4 0 3 94

6 0 0 4 3 94

7 7 7 0 7 87

8 0 7 0 7 87

9 0 0 7 7 87
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Reed-Frost SLIR: Calculating prevalence 
of latent individuals
 Prevalence of latent individuals will be the number of latent cases 

that occurred in the last x time periods, where x is the number of 
periods that latency lasts

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Latency lasts for 2 time periods

Time Latent incidence Latent prevalence Cases Immune Susceptible

0 0 0 1 0 100

1 2 2 0 1 98

2 0 2 0 1 98

3 0 0 2 1 98

4 4 4 0 3 94

5 0 4 0 3 94

6 0 0 4 3 94

7 7 7 0 7 87

8 0 7 0 7 87

9 0 0 7 7 87
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Reed-Frost SLIR: Calculating the number 
of new cases
 Individuals that become latent in time period t will become 

infectious cases in time period t + x where x is the duration of 
latency

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Latency lasts for 2 time periods

Time Latent incidence Latent prevalence Cases Immune Susceptible

0 0 0 1 0 100

1 2 2 0 1 98

2 0 2 0 1 98

3 0 0 2 1 98

4 4 4 0 3 94

5 0 4 0 3 94

6 0 0 4 3 94

7 7 7 0 7 87

8 0 7 0 7 87

9 0 0 7 7 87
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Modified Reed-Frost models: SLIR (III)

Model-predicted cases per time period
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Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Latency lasts for 2 time periods

SIR (no latency)

SLIR

(latency = 2 periods)
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Modified Reed-Frost models: SIR with 
extended infectiousness (I)

 We’ll keep track of new cases (case incidence) as well as the 

accumulated cases (case prevalence)

Time Case incidence Case prevalence Immune Susceptible

0 1 1 0 100

1 2 3 0 98

2 6 8 1 92

3 13 19 3 79

4 25 39 9 54

5 29 54 22 25

6 16 45 47 8

7 5 21 76 3

8 1 6 93 2

9 0 1 98 2

10 0 0 99 2

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Infectiousness lasts for 2 time periods
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Reed-Frost SIR with extended 
infectiousness: Calculating case incidence

 New cases continue to be calculated as before

Time Case incidence Case prevalence Immune Susceptible

0 1 1 0 100

1 2 3 0 98

2 6 8 1 92

3 13 19 3 79

4 25 39 9 54

5 29 54 22 25

6 16 45 47 8

7 5 21 76 3

8 1 6 93 2

9 0 1 98 2

10 0 0 99 2

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Infectiousness lasts for 2 time periods
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Reed-Frost SIR with extended 
infectiousness: Calculating case prevalence
 Case prevalence will be the number of cases that occurred in the last x

time periods, where x is the number of periods that infectiousness lasts

Time Case incidence Case prevalence Immune Susceptible

0 1 1 0 100

1 2 3 0 98

2 6 8 1 92

3 13 19 3 79

4 25 39 9 54

5 29 54 22 25

6 16 45 47 8

7 5 21 76 3

8 1 6 93 2

9 0 1 98 2

10 0 0 99 2

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Infectiousness lasts for 2 time periods
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Reed-Frost SIR with extended infectiousness: 
Calculating number of immune individuals

 Number of immune individuals will depend on the number of cases 

that occurred x time periods ago

Time Case incidence Case prevalence Immune Susceptible

0 1 1 0 100

1 2 3 0 98

2 6 8 1 92

3 13 19 3 79

4 25 39 9 54

5 29 54 22 25

6 16 45 47 8

7 5 21 76 3

8 1 6 93 2

9 0 1 98 2

10 0 0 99 2

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Infectiousness lasts for 2 time periods
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Model-predicted cases per time period
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Modified Reed-Frost models: SIR with 
extended infectiousness (II)

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Infectiousness lasts for 2 time periods

SIR without extended

infectiousness

(incidence = prevalence)

SIR with extended

infectiousness:

Incidence

Prevalence
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Modified Reed-Frost models: SIR with 
extended infectiousness (III)

 We’ve seen that, for a basic Reed-Frost model:

k = R0

 In this modified Reed-Frost model:

 Population size: N = 101

 Prob. of adequate contact: p = 0.02

 k = 2

 Infectiousness lasts for 2 time periods

 What is R0?
 In this case, R0 = 4

 In general:
 R0 = k × (# of time periods that an individual is infectious)
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Modified Reed-Frost models: SIRS (I)

 For diseases that have a 
temporary immune period, a 
Susceptible-Immune-
Recovered-Susceptible
model might be appropriate

 In the context of a Reed-
Frost model, individuals may 
be immune for one or more 
time periods before returning 
to a susceptible state

 As we’ve done before, we’ll 
follow the incidence and 
prevalence of immune 
individuals

Susceptible

InfectiousRecovered

Infection

Natural

progression

Natural

progression
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Reed-Frost SIRS: Calculating incidence of 
immune individuals

Time Cases Immune Incidence Immune prevalence Susceptible

0 1 0 0 100

1 2 1 1 98

2 4 2 3 94

3 7 4 6 88

4 12 7 11 78

5 17 12 19 66

6 19 17 28 54

7 17 19 35 49

8 14 17 36 51

9 13 14 31 57

10 13 13 27 61

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Immunity lasts for only 2 time periods

 Individuals become infectious just as in the basic SIR model
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Reed-Frost SIRS: Calculating prevalence 
of immune individuals

Time Cases Immune Incidence Immune prevalence Susceptible

0 1 0 0 100

1 2 1 1 98

2 4 2 3 94

3 7 4 6 88

4 12 7 11 78

5 17 12 19 66

6 19 17 28 54

7 17 19 35 49

8 14 17 36 51

9 13 14 31 57

10 13 13 27 61

Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Immunity lasts for only 2 time periods

 Prevalence will be the number of newly immune individuals from the last x
time periods, where x is the number of periods that immunity lasts
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Model-predicted cases per time period
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Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Immunity lasts for only 2 time periods

SIR (permanent

immunity)

SIRS (waning immunity)

Modified Reed-Frost models: SIRS (III)
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Model-predicted cases per time period
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Model parameters:

 Population size: N = 101

 Initial number of susceptibles: S0 = 100

 Initial number of cases: C0 = 1

 Prob. of adequate contact: p = 0.02

 Infectiousness lasts 2 time periods

 Immunity lasts for only 2 time periods

SIR without extended

infectiousness

(incidence = prevalence)

SIRS without extended

infectiousness

(incidence = prevalence)

SIRS with extended

infectiousness

(case incidence)

Modified Reed-Frost models: SIRS with 
extended infectiousness
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Summary

 The concept of disease state is common to many disease 
models, regardless of their form (differential calculus, Reed-
Frost-type, Markov chain, etc.)

 The basic Reed-Frost model provides a framework in which 
the number of new cases can be predicted based on the 
number of cases in the previous time period: Ct+1 = St(1 - q )

 Some of the assumptions of the basic Reed-Frost model can 
be modified to model more complex situations

 The goodness of fit of model predictions to actual data can 
be assessed with statistical techniques

 This afternoon, we will build several Reed-Frost-type models, 
and observe their behavior under a variety of conditions

Ct
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Questions?
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Recommended reading
 Abbey, H., 1952. An examination of the Reed-Frost theory of 

epidemics. Human Biology 24: 201–233. (One of two early papers 
describing the basic Reed-Frost model)

 Carpenter, T.E., 1984. Epidemiologic modeling using a 
microcomputer spreadsheet package. American Journal of 
Epidemiology 120: 943–951. (While the hardware and software 
used now seem quaint, the description of Reed-Frost modeling with 
a spreadsheet is still applicable, as are the model assumptions)

 Daley, D.J., and Gani, J. 1999.  Epidemic Modelling: An 
Introduction.  Cambridge, UK: Cambridge University Press. 
(Chapter 6 discusses fitting models to observed data from a more 
mathematical perspective)

 Maia, J.O.C., 1952. Some mathematical developments on the 
epidemic theory formulated by Reed and Frost. Human Biology 24: 
167–200. (The second of two early papers describing the basic 
Reed-Frost model: discusses the role of k)

 Thrusfield, M. 2005.  Veterinary Epidemiology, 3rd ed.  Oxford: 
Blackwell Science Ltd.  (Chapter 8 describes the basic Reed-Frost 
model)
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