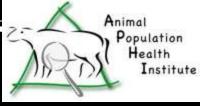
Markov chain and state transition models

Aaron Reeves, Animal Population Health Institute College of Veterinary Medicine and Biomedical Sciences Colorado State University, Fort Collins, Colorado



Moving between disease states in a Reed-Frost model

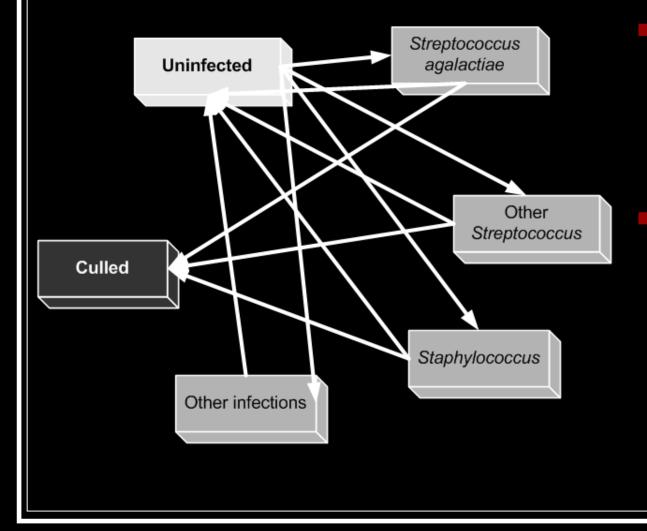
The transition from one disease state to another is a linear process:

- The number of individuals in each state during a particular time period is dependent only on the number of individuals in each state during the previous time period
- "Lags" can be introduced to alter the timing, but this basic principle still applies

Moving between disease states in life

- In more complex (e.g., real) systems, the transition between disease states is not necessarily linear
 - Chronic conditions
- The Reed-Frost framework does not account for the effects of interventions
 - Culling
 - Vaccination

Example: A state transition diagram for a model of mastitis in cattle (I)

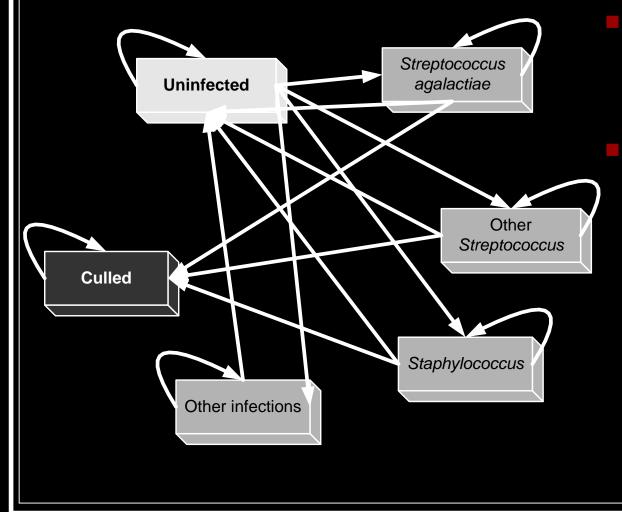


The arrows represent all of the possible (or at least all of the important) transitions between states

As in Reed-Frost and the differential calculus models, an individual can have only one state per time period

Based on Schwabe *et al.*, 1977 and Carpenter, 1988

Example: A state transition diagram for a model of mastitis in cattle (II)



Individuals can also remain in a state for more than one time period

It is more convenient to illustrate a state transition model as a table, or a *matrix*

Based on Schwabe *et al.*, 1977 and Carpenter, 1988

Example: A state transition matrix for a model of foot-and-mouth disease

	ТО						
FROM	Susceptible	Infectious	Immune	Removed			
Susceptible	Remaining susceptible	Infection	Effective vaccination	Preemptive culling			
Infectious			Natural immunity	Slaughter of affected herds			
Immune	Waning immunity		Remaining immune				
Removed				Once removed, an individual remains removed			

Each cell shows the pathway or pathways by which individuals transition between states

These pathways can be expressed as probabilities

Example: Representing an *SLIR* model in a state transition matrix

Su	Infection		Natural Ogression Mathematics	Natura progress		ered
		Susceptible	Latent	Infectious	Recovered	
	Susceptible	1 – P(infection)	P(infection)	0	0	
	Latent	0	0	1	0	
	Infectious	0	0	0	1	
	Recovered	0	0	0	1	

The value in each cell represents the probability that an individual will move from *State_{Row}* to *State_{Column}*

Example: A state transition matrix for mastitis

	Uninfected	Strep ag.	Strep. other	Staph.	Other	Culled
Uninfected	0.52	0.03	0.02	0.12	0.02	0.29
Strep. ag.	0.7	0.01	0	0	0	0.29
Strep. other	0.7	0	0.01	0	0	0.29
Staph.	0.1	0	0	0.4	0	0.5
Other	0.71	0	0	0	0	0.29
Culled	0	0	0	0	0	1

Note that the sum across each row is 1: every "possible" transition is accounted for

Applying a state transition matrix in a disease model: *SLIR*

	Susceptible	Latent	Infectious	Recovered
Susceptible	0.7	0.3	0	0
Latent	0	0	1	0
Infectious	0	0	0	1
Recovered	0	0	0	1

Let's start with a population of 100 susceptible individuals

	Number of individuals in each state				
Time period	Susceptible	Latent	Infectious	Recovered	
0	100	0	0	0	

What does the model predict for time period 1?

Susceptible individuals in time period 1 (SLIR)

	Susceptible	Latent	Infectious	Recovered
Susceptible	0.7	0.3	0	0
Latent	0	0	1	0
Infectious	0	0	0	1
Recovered	0	0	0	1

 $S_{1} = (S_{0} \times P_{SS}) + (L_{0} \times P_{LS}) + (I_{0} \times P_{IS}) + (R_{0} \times P_{RS})$ $S_{1} = (100 \times 0.7) + (0 \times 0) + (0 \times 0) + (0 \times 0)$ $S_{1} = 70$

	Number of individuals in each state				
Time period	Susceptible	Latent	Infectious	Recovered	
0	100	0	0	0	
1	70				

Latent individuals in time period 1 (SLIR)

	Susceptible	Latent	Infectious	Recovered
Susceptible	0.7	0.3	0	0
Latent	0	0	1	0
Infectious	0	0	0	1
Recovered	0	0	0	1

 $L_{1} = (S_{0} \times P_{SL}) + (L_{0} \times P_{LL}) + (I_{0} \times P_{IL}) + (R_{0} \times P_{RL})$ $L_{1} = (100 \times 0.3) + (0 \times 0) + (0 \times 0) + (0 \times 0)$ $L_{1} = 30$

	Number of individuals in each state				
Time period	Susceptible	Latent	Infectious	Recovered	
0	100	0	0	0	
1	70	30	0	0	

Susceptible individuals in time period 2 (SLIR)

	Susceptible	Latent	Infectious	Recovered
Susceptible	0.7	0.3	0	0
Latent	0	0	1	0
Infectious	0	0	0	1
Recovered	0	0	0	1

 $S_{2} = (S_{2} \times P_{SS}) + (L_{2} \times P_{LS}) + (I_{2} \times P_{IS}) + (R_{2} \times P_{RS})$ $S_{2} = (70 \times 0.7) + (30 \times 0) + (0 \times 0) + (0 \times 0)$ $S_{2} = 49$

	Number of individuals in each state					
Time period	Susceptible	Latent	Infectious	Recovered		
0	100	0	0	0		
1	70	30	0	0		
2	49					

Latent individuals in time period 2 (SLIR)

	Susceptible	Latent	Infectious	Recovered
Susceptible	0.7	0.3	0	0
Latent	0	0	1	0
Infectious	0	0	0	1
Recovered	0	0	0	1

 $L_{2} = (S_{2} \times P_{SL}) + (L_{2} \times P_{LL}) + (I_{2} \times P_{IL}) + (R_{2} \times P_{RL})$ $L_{2} = (70 \times 0.3) + (30 \times 0) + (0 \times 0) + (0 \times 0)$ $L_{2} = 21$

	Number of individuals in each state				
Time period	Susceptible	Latent	Infectious	Recovered	
0	100	0	0	0	
1	70	30	0	0	
2	49	21			

Infectious individuals in time period 2 (SLIR)

	Susceptible	Latent	Infectious	Recovered
Susceptible	0.7	0.3	0	0
Latent	0	0	1	0
Infectious	0	0	0	1
Recovered	0	0	0	1

 $I_{2} = (S_{2} \times P_{SI}) + (L_{2} \times P_{LI}) + (I_{2} \times P_{II}) + (R_{2} \times P_{RI})$ $I_{2} = (70 \times 0) + (30 \times 1) + (0 \times 0) + (0 \times 0)$ $I_{2} = 21$

	Number of individuals in each state				
Time period	Susceptible	Latent	Infectious	Recovered	
0	100	0	0	0	
1	70	30	0	0	
2	49	21	30	0	

A more complex state transition model: Mastitis

	Uninfected	Strep ag.	Strep. other	Staph.	Other	Culled
Uninfected	0.52	0.03	0.02	0.12	0.02	0.29
Strep. ag.	0.7	0.01	0	0	0	0.29
Strep. other	0.7	0	0.01	0	0	0.29
Staph.	0.1	0	0	0.4	0	0.5
Other	0.71	0	0	0	0	0.29
Culled	0	0	0	0	0	1

 $U_1 = (803 \times 0.52) + (52 \times 0.7) + (52 \times 0.7) + (79 \times 0.1) + (14 \times 0.71) + (0 \times 0) = 508$ Sa₁ = (803 \times 0.03) + (52 \times 0.01) + (52 \times 0) + (79 \times 0) + (14 \times 0) + (0 \times) = 25

Time period	Uninfected	Strep ag.	Strep. other	Staph.	Other	Culled
0	803	52	52	79	14	0
1	508	25	17	128	16	305
etc.						

Adapted from Carpenter, 1988

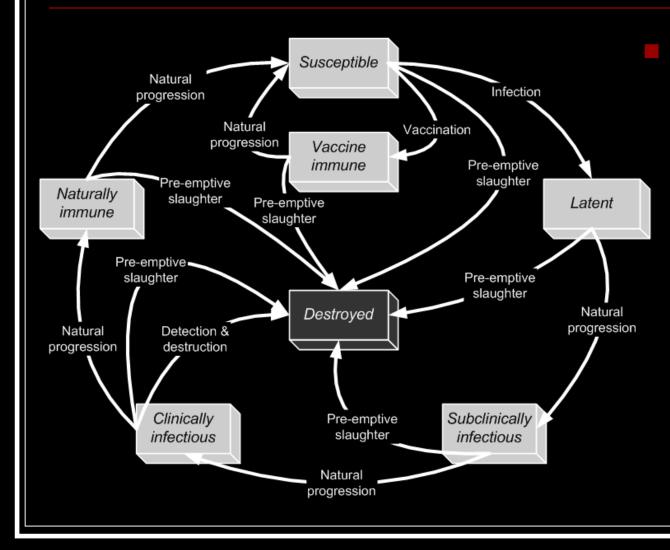
An aside: Markov chain vs. state transition models

- A Markov chain is a special case of a state transition model
 - In a Markov chain model, the transition probabilities are fixed
 - Markov chain models can be useful for modeling endemic diseases (as in the mastitis example)
 - In more complex state transition models ("modified Markov chains"), the transition probabilities can change over time
 - For example, the probability of infection may depend on the number of cases in the previous time period
 - Does this look familiar?

Monte Carlo state transition models

- We've seen that Monte Carlo methods can be used to allow probabilities in a model to vary
- There are a lot of probabilities in a state transition matrix
- There is a great deal of potential for the use of Monte Carlo methods in a state transition model

Preview of coming attractions



NAADSM is a framework for sophisticated state transition models which make extensive use of Monte Carlo methods

Figure modified from Harvey *et al.*, 2007

Recommended reading

Carpenter, T.E., 1988. Microcomputer programs for Markov and modified Markov chain disease models. *Preventive Veterinary Medicine* 5: 169–179. (A very nice demonstration of state transition modeling with a spreadsheet.)

Miller, W.M., 1976. A state-transition model of epidemic footand-mouth disease. In Ellis, P.R., Shaw, A.P.M., and Stephens, A.J., eds. New Techniques in Veterinary Epidemiology and Economics, Proceedings of a Symposium, University of Reading, England: ISVEE I. <u>http://www.sciquest.org.nz</u> (An early application of a state transition model for animal disease.)

References cited

- Carpenter, T.E., 1988. Microcomputer programs for Markov and modified Markov chain disease models. *Preventive Veterinary Medicine* 5: 169–179.
- Harvey, N., Reeves, A., Schoenbaum, M.A., Zagmutt-Vergara, F.J., Dubé, C., Hill, A.E., Corso, B.A., McNab, W.B., Cartwright, C.I., and Salman, M.D., 2007. The North American Animal Disease Spread Model: A simulation model to assist decision making in evaluating animal disease incursions. Preventive Veterinary Medicine, in press.
- Miller, W.M., 1976. A state-transition model of epidemic foot-andmouth disease. In Ellis, P.R., Shaw, A.P.M., and Stephens, A.J., eds. New Techniques in Veterinary Epidemiology and Economics, Proceedings of a Symposium, University of Reading, England: ISVEE I. <u>http://www.sciquest.org.nz</u>

Schwabe, C.W., Riemann, H.P., and Franti, C.E., 1977.
Epidemiological Models. In: Epidemiology in Veterinary Practice.
Philadelphia: Lea and Febiger.