Using NAADSM 3.1

Part 2: Disease spread

NAADSM Development Team http://www.naadsm.org

Mechanisms of disease spread

- Three mechanisms of disease spread are available in *NAADSM*:
 - Direct contact movement of animals
 - Indirect contact movement of people, equipment, vehicles, etc.
 - "Airborne" or local area spread
 - Based on proximity to infected farms
- Any subset of these can operate simultaneously

Disease state and disease spread (I)

- Transmission via direct contact can occur if infected unit is Latent, Infectious Subclinical or Infectious Clinical
 - The user has the option of simulating spread by direct contact from latent and/or subclinical units
- Transmission of disease via indirect contact can occur if infected unit is either Infectious Subclinical or Infectious Clinical
 - The user has the option of simulating spread by indirect contact from subclinical units
 - Latent units can never spread disease by indirect contact
- Transmission via airborne dispersion can occur when infected unit is Infectious Subclinical or Infectious Clinical

Disease state and disease spread (II)

- Recall that latent herds (units) are infected, but not yet shedding the disease agent
- What might happen if:
 - Animals from a latent herd are introduced into a susceptible herd?
 - Answer: This is direct contact. Infected animals are moved into a susceptible herd. The susceptible herd may become infected as a result.
 - Why might this make sense?
 - A feed truck visits a latent herd, and then later visits a susceptible herd without being washed?
 - Answer: This is indirect contact. In NAADSM, latent herds cannot spread disease by indirect contact.

Disease state and disease spread (III)

- Recall that subclinical herds are infected AND infectious (shedding the agent)
- What might happen if:
 - Animals from a subclinical herd are introduced into a susceptible herd?
 - Answer: Subclinical herds may transmit disease by direct contact.
 - A feed truck visits a subclinical herd, and then later visits a susceptible herd without being washed?
 - Answer: Subclinical herds may spread disease by indirect contact.

NAADSM demo (V): Disease spread

- Viewing "<u>Spread options</u>" window
 - Select the spread mechanism(s) suitable for your situation
 - Linear versus exponential decline for airborne spread will be discussed a little later

Who can spread to whom?

Disease spread between units depends on:

- The biology of the disease
- The contact patterns among units of different production types

NAADSM demo (VI): Creating production type pairings

- Viewing the "Production type combinations" window
 - Adding or removing production type combinations

Parameters for contact spread: Contact rate

- The main parameter for contact spread is the contact rate, or the mean number of outgoing contacts per day from a unit
 - Contact rates are specified independently for each pairing of production types
 - For each unit that can infect others, the model simulates a number of outgoing shipments using EITHER:
 - A stochastic, Poisson distribution, defined by its mean
 - OR a fixed movement rate, if the user wants to specify contact frequencies more exactly (*e.g.*, exactly one contact every other day)

Parameters for contact spread: Movement distance

- From a probability density function of movement distances, a distance is chosen for each shipment
 - This parameter is specified independently for each pairing of production types

Parameters for contact spread: Selecting a recipient of contact (I)

- The model chooses as potential destinations the units where distance from the source best matches the distance selected from the probability density function
 - Direction is not considered
 - Production types are considered
 - Status of recipient units is considered
 - Quarantined units cannot be the recipients of direct contact
 - Quarantined units can be the recipients of indirect contact
 - (Quarantine will be discussed in more detail later)

Parameters for contact spread: Selecting a recipient of contact (II)

- If two destinations are the same distance from the source, choose one randomly
 - This choice is weighted by size: a unit twice as large is twice as likely to be chosen

Things to know about contacts & movements

- If NO suitable destinations exist at the appropriate distance, NAADSM will search outside of input distribution to find a destination
- If ANY suitable destinations exist in the database, the movement will occur
 - This is especially important in small populations, near the edges of the population, when movements are not restricted
- If an appropriate destination has been QUARANTINED it cannot accept an incoming direct contact

- A shipment occurs from a beef farm to a dairy farm
- A distance of 30 km is selected from the input distribution
- Potential recipients:
 - Unit 1, swine, susceptible, not quarantined, 25 km away
 - Unit 2, dairy, susceptible, not quarantined, 40 km away
 - Unit 3, dairy, susceptible, not quarantined, 300 km away
- Which unit is selected as the recipient?

Small change:

- Unit 1, swine, susceptible, not quarantined, 25 km away
- Unit 2, dairy, clinically infectious, not quarantined, 40 km away
- Unit 3, dairy, susceptible, not quarantined, 300 km away
- Which is selected?

Time passes:

- Unit 1, swine, susceptible, not quarantined, 25 km away
- Unit 2, dairy, destroyed, 40 km away
- Unit 3, dairy, susceptible, not quarantined, 300 km away
- Now which is selected?

Things get worse:

- Unit 1, swine, susceptible, not quarantined, 25 km away
- Unit 2, dairy, destroyed, 40 km away
- Unit 3, dairy, susceptible, quarantined, 300 km away
- Now which is selected?

Parameters for contact spread: Probability of infection transfer

- The probability of infection transfer is the probability that, if a contact occurs, it will be adequate
 - Recall the definition of adequate contact from earlier
 - What is the difference between adequate and effective contact?
 - This concept is directly analogous to "h" that we used in our Reed-Frost models

Notes on indirect contact

- Indirect contact works like direct contact, except:
 - Latent units cannot be a source of infection

- Can the following contacts in NAADSM be adequate, effective, both, or neither?
 - Movement of animals from a latent herd (unit) to a susceptible herd
 - Movement of animals from a clinical herd to a susceptible herd
 - Movement of animals from a clinical herd to a vaccine immune herd
 - Movement of animals from a clinical herd to a latent herd
 - Movement of a truck from a latent herd to a susceptible herd
 - Movement of a truck from a clinical herd to a naturally immune herd

NAADSM demo (VII): Contact spread

Viewing the "<u>Contact spread</u>" window

- Options for direct and indirect contact spread
 - Production type pairings
 - Transmission
 - Contact rate
 - Remember: this represents outgoing shipments
 - Probability of infection transfer
 - Distance distribution
 - Shipping delay
 - Be careful! Long shipping delays can produce odd results
 - May miss shipments if tracing occurs before shipment arrives

"Airborne" or local-area spread

Parameters:

- Wind direction (0-360 degrees)
- Rate of spread declines linearly or exponentially
- Probability of infection at 1 km from source
- Maximum distance of spread
- As with direct and indirect contact spread, the parameters are specified independently for each pairing of production types

Directionality of airborne spread

 Consider all possible target units given wind direction and maximum distance of spread

- This mechanism can be used in a nondirectional way (*i.e.*, 360 degrees) to simulate "local area" spread
 - Spread that cannot be attributed to any particular source, but is observed to occur in the area surrounding an infected premises

Airborne spread: Linear versus exponential decline

- A probability that disease transfer will occur between units 1 km apart is required for airborne/local area spread
 - (How might values for this parameter be obtained?)
- The red line in the plot shows a constant probability of disease spread, regardless of distance
 - (NAADSM does not actually support this, but it's a useful example)
- The green line shows a probability that declines linearly
 - A maximum distance of spread is also required
- The blue line shows a probability that declines exponentially
 - A maximum distance of spread is not required

NAADSM demo (VIII): Airborne spread

- Viewing "airborne spread" window
 - Production type combinations
 - Probability of spread/day at 1 km
 - Range of wind direction
 - Transport delay

Summary

- Three mechanisms of disease spread are simulated in NAADSM
- The production types of the source and recipient units influence the frequency of contact and the probability that disease spread will occur by any of these mechanisms
- The disease state of a source unit determines whether contact can be adequate
- The disease state of a recipient unit determines whether an adequate contact will be effective
- The airborne spread mechanism in NAADSM can be used to simulate otherwise uncharacterizable local-area spread

The NAADSM development team (past and present)

- Animal Population Health Institute at Colorado State University
 - Shaun Case
 - Ashley E. Hill
 - Aaron Reeves
 - Mo D. Salman
 - Francisco Zagmutt-Vergarra
- Canadian Food Inspection Agency
 - Caroline M. Dubé
- Ontario Ministry of Agriculture, Food, and Rural Affairs
 - W. Bruce McNab

- United States Department of Agriculture
 - Claudia I. Cartwright
 - Barbara A. Corso
 - Conrad Estrada
 - Kim Forde-Folle
 - Mark A. Schoenbaum
 - Ann H. Seitzinger
- University of Guelph Department of Computer and Information Science
 - Neil Harvey
 - Deb Stacey

Recommended reading

- Harvey, N., Reeves, A., Schoenbaum, M.A., Zagmutt-Vergara, F.J., Dubé, C., Hill, A.E., Corso, B.A., McNab, W.B., Cartwright, C.I., Salman, M.D., 2007. The North American Animal Disease Spread Model: A simulation model to assist decision making in evaluating animal disease incursions. *Preventive Veterinary Medicine* 82: 176– 197.
- Hill, A., and Reeves, A. 2006. User's Guide for the North American Animal Disease Spread Model, 2nd ed. Fort Collins, Colorado: Animal Population Health Institute, Colorado State University. Available at <u>http://www.naadsm.org</u>