
Animal Disease Spread Model
 Detailed Evaluation of Results

Table of Contents
Results Evaluation
Verification
Validation
Example
What’s Next?

Document Conventions
The following conventions are used throughout the training modules:

Other TRAINING MODULES in this series will be referred to using all capital letters, bold face, italics and underline.

Rhetorical questions and extra notes will be in orange italics.

Conventions applying to the ADSM application are:

Navigation tabs on right and Admin panels on left are designated with an underline. Examples are Project Panel or
Population tab.

Items with an action on click, such as [Apply] Button or [Save As] icon are enclosed in square brackets.

Parameter fields (inputs) are in blue italics and Variables (outputs) are in green italics.

Navigation Tabs > Parameter field indicates to go to the given navigation tab to find the given field.

Hyperlinks appear in bright green type with underline http://navadmc.github.io/ADSM/

http://navadmc.github.io/ADSM/

Results Evaluation

Once there is a simple understanding of what the
results look like, it is important to evaluate those
results. The training RESULTS goes through all the
main outputs from ADSM.

It is critical to understand how the parameter
inputs created the outputs. This allows you to
determine if those outputs are a valid
representation of the disease systems you are
attempting to simulate.

This could be called a “Sniff Test.”

The outcome of an ADSM simulation (as with any
computer simulation model) depends heavily on the
quality of the scenario input parameters, the assumptions
of the modeler who created the scenario, and the
capabilities and limitations of the model framework itself.

The utility of disease models like those created with
ADSM critically depends on participation and
interpretation of experts familiar with the behavior of
disease within populations, and with the limitations,
assumptions, and output of the model. Without such
participation, modeling results can be seriously
misleading.

While ADSM is available as a service to animal health
communities, the ADSM development team does not
necessarily endorse results obtained with the ADSM
application or any conclusions drawn from such results.

It is important that the model be
both accurate and credible.

Creating a meaningful results dataset
requires both verification and
validation. We will discuss each of
these concepts.

Verification

Verification of a model is the process of confirming that the
software programming was correctly implemented with respect to
the conceptual model. It means the simulation application is
performing the calculations in the manner that is expected.

In other words, the model does what it was supposed to do.

Verification has been the
job of many people who
have played a part in the
ADSM and NAADSM
Development Team as the
applications have been
created. Team members
have spent many hours
doing verification.

As such, this training will
focus on validation.

Validation

Validation of a model
confirms the accuracy
of the model's
representation of the
real system you are
attempting to simulate.

The ability to completely and
accurately represent a real
system is very complex.

Are the exact parameters known
or are they unknown?

Can the parameters reproduce
the exact population including
the specifics of the animal
management practices and every
possible contact?

If these things were possible, a
model would not be necessary.
Concept: Tariq Halasa

How do you go about
checking that a software
application accurately
simulates a real-world
system?

This is especially difficult
when the input values that
were put into the model
parameters range from highly
scientific to scientific
guesses.

There are extensive writings on methods of validating models.
Since each user will be exercising this model in a different way on a
different disease with different parameters, it will be necessary for
users to apply some of these techniques to determine if the model
credibly represents the system they are modeling.

This training will go
through some tools
to help you
understand first
what your model
did, and if your
model did what you
asked it to do.

You will then have
to decide if it
realistically
represented the
real system that
you were expecting
to simulate.

Validation: Some Helpful References

1. Reeves A, Salman MA, Hill AE. Approaches for evaluating veterinary epidemiological models:
verification, validation and limitations. Rev Sci Tech. 2011;30(2):499-512.
doi:10.20506/rst.30.2.2053

2. Kotiadis K, Robinson S. Conceptual modelling: Knowledge acquisition and model abstraction. 2008
Winter Simulation Conference, Miami, FL, USA, 2008, pp. 951-958, doi:
10.1109/WSC.2008.4736161.

3. Sargent RG. Verification and validation of simulation models. Proceedings of the 2003 Winter
Simulation Conference, 2003. New Orleans, LA, USA, 2003, pp. 27-48 Vol.1, doi:
10.1109/WSC.2003.1261406.

4. Sargent RG. An introduction to verification and validation of simulation models. 2013 Winter
Simulations Conference (WSC), Washington, DC, 2013, pp. 321-327, doi:
10.1109/WSC.2013.6721430.

5. Garner MG, Hamilton SA. Principles of epidemiological modelling. Rev Sci Tech. 2011;30(2):407-
416. doi:10.20506/rst.30.2.2045

6. Sanson RL, Harvey N, Garner MG, et al. Foot and mouth disease model verification and 'relative
validation' through a formal model comparison. Rev Sci Tech. 2011;30(2):527-540.
doi:10.20506/rst.30.2.2051

Recall from the ADSM
Overview that simulations
produce a representation

of a complex system.

“All models are wrong, but some are useful”
George E.P. Box

We will use outputs provided by ADSM to
evaluate if a scenario provided expected
output based on the input parameters.

Example

This example will use the Sample Scenario, run with
all Supplemental Outputs turned on and a Summary
generated.
It will cover:
 High-level information
 Exposures, adequate exposures, and infection
 Parameters driving spread of infection
 Controls – detection and destruction

Please note that we will
review only a small subset
of the ADSM output to
demonstrate the research
methods. You can apply the
methods used in this
training to any variable that
is created from ADSM.

Review Results Home
Results Home is the
best place to start
evaluating the
scenario.

It is important to
know how to look
at your results at
both a high level
and at a detailed
level.

The Data Dictionary can provide field level definitions, use the ? Panel in the ADSM application to find the Data Dictionary.

Sample Scenario Population Heat Map
The Population Heat Map gives you a quick visual summary of the scenario outcome. Recall that the
Population Heat Map is a combination of all the iterations that were run. While it is a high-level view, it helps
to understand the broad scope of the outbreak.

When using zones, the darker blue color indicates those areas that were involved in most or all iterations. As
the color gets lighter, it means those areas were in involved in fewer iterations. Each unit will have a status
graph to indicate the frequency of the unit outcomes. If Zones were not used, then no zone circles are drawn.
Instead, each unit will have a status graph showing the frequency of unit outcomes. On a large population,
the resolution may not allow you to scroll into the units to see the detail.

On the first run, it is hard to tell if this is a reasonable outcome. As you gain more
experience, you will become more aware of population heat map changes in response
to changes in the parameter input.

In addition to the Population Heat Map,
the selected output variable and the
summary file allow quick glances at
results values at a high level.

Have you used the Sample Scenario several times and noticed that it gives you similar
results every time?

This is on purpose.

The Random Seed is a set value in the Sample Scenario. This causes the randomly varying
parameters to draw the same values every time the model is run, resulting in the same
results every time. When a seed value is specified, model results will only change when
parameter inputs are changed, which can be useful for evaluation.

For the training example, it is important to have an
example that can be explained consistently. Therefore,
we are using the Sample Scenario.

High Level Indicators

The median outbreak duration and
median numbers of infected units and
animals can indicate unexpected results
that require further exploration.

We can also
query the raw
data and learn
more details
about the results.
You can access
SQLite Explorer
through the
Admin Panel.

These are the main tables that hold the results, so our queries
will connect to these tables.

Results_DailyByProductionType
Results_DailyByZoneandProductionType
Results_DailyByZone
Results_Daily Controls

Additional Helpful Tables
Databases store information in a way that is most efficient and without redundancy.
Sometimes efficiency creates an output that is difficult to understand. For example,
Production Types are stored as numeric identifiers on the Results tables. As a user, you
would not know that ID even existed. By connecting the table with the Production Type
names in a query, it is easier to understand the data results.
The queries in the Example Database Queries
show how to make this connection.

The following tables are helpful when a
Production Type name or a Zone name is
needed.

ScenarioCreator_ProductionType
ScenarioCreator_Zone

A Helpful Hint

The production_type_id field for the first record is blank (or null)
because that record shows values for all production types
combined. The example queries take advantage of this by using a
Where Clause to return only the combined record.

WHERE 1=1
AND production_type_id is null

The Where 1=1 clause is a logical true. This makes it easy to add additional clauses without having to rewrite. Simply add another AND clause if needed.

Another Helpful Hint

Databases do not store data in an order that is logical to you. Instead,
they store it in the order that it was created. Use
 Order By iteration and day
in your query to create a logical order.

In this image, the actual
order iterations
completed was 2, 1, 3, 5
then 4.

Raw Data for Duration and Infected at First Detection query

We will start at a high
level to look at these
results.

You can cut and paste this
query into your SQL
Explorer window if you
would like hands-on
experience.

SELECT iteration,
Day,
Last_day,
Diseaseduration,
Outbreakduration,
firstDetUInf,
firstDetAInf
FROM Results_DailyControls
WHERE 1=1
AND last_day <> 0
Order by 1

Raw Data for Duration and Infected at First Detection results
Here are the results from the previous query.

Raw Data for Duration and Infected at First Detection
What can be learned from this result set? Since this is the first look at the data, it is still early in the investigation.

There were a range of
outcomes.

The fewer units infected at
first detection (firstDetUInf),
the shorter the outbreak
seems to be…
BUT,
The count of animals
(firstDetAInf) also matters as
in the case of iteration 10.

Iteration 10 had four units
with many animals infected
at first detection.
The Summary file agrees with
the raw data for minimum
and maximum values.

Duration and Infected at First Detection
Many things could influence the duration, including both the spread of the disease and the control measures taken in
response to the disease. While duration is a high-level indicator of what the model is doing, it may not be the best
place begin evaluating what is happening.

The data also returned two duration variables, Disease duration and Outbreak Duration. The difference between disease duration
(diseaseDuration) and outbreak duration (outbreakDuration) is this:

 Disease duration is the number of days that any unit was in an infected state.

 Outbreak duration is the number of days that any unit was in an infected state, plus any additional days
 needed to complete the control measures that were applied.

Let’s move on to look at more details in the results, starting with count of exposure, count of exposures that are
adequate to cause disease, and count of infections that happen because of those exposures.

Understanding Exposures - 10 Iterations

The visualization shows the
summary of exposures
throughout the outbreak.
Exposures are not always
adequate to cause infection. Even
when the exposure is adequate, it
doesn’t cause disease if the
recipient unit is not susceptible to
disease due to immunity.

What situations could make a unit not susceptible
to disease when the exposure was adequate?

If the unit was previously exposed and is now in an active
disease state, adequate exposure will not cause an infection.

If the unit is in an immune state, due to either vaccine
immunity or natural immunity, adequate exposure will not
cause an infection.

If the unit is in a susceptible state, there is still a probability
that the adequate exposure will not result in disease
transmission. The Infection Probability parameter controls
infection probability.

Therefore, exposure (expcU), adequate exposure (adqcU) and
infected (infcU) may all have different values in the raw data.

Mariposa Ranch Watusi

Raw Data for Exposure, Adequate Exposure, and Infection
Copy and paste this query into your SQL window if you want hands-on experience. Remember to use the Sample
Scenario with Outputs, or any scenario that has been run.

SELECT iteration,
Day,
Last_day,
production_type_id, -- not useful, use case to get name
CASE WHEN name IS NULL THEN "ALL" ELSE name END as productiontype,
expcU,
adqcU,
infcU
FROM Results_DailybyProductionType r
LEFT JOIN -- needed since one side of join can be null
ScenarioCreator_productiontype pt
ON r.production_type_id = pt.id
WHERE 1=1
AND production_type_id IS NULL -- only pulling back combined production type records
AND iteration = 1 -- just look as one iteration to start
ORDER BY 1, 2 -- don't assume order is correct

Raw Data for Exposure, Adequate Exposure, and Infection
The query requested results only
from Iteration 1, starting on day 1
and counting forward. On day 5,
an exposure happens. The
exposure is adequate, and it
causes an infection.

On day 6, another exposure
happens; it is adequate and also
causes an infection.

The variables in this query are the
cumulative variables; they are a
sum of the total as the days
progress.

In the query window, it is possible
to scroll down and view each day
of the outbreak.

Raw Data for Exposure, Adequate Exposure, and Infection

In the query window, it is possible
to scroll down and see all 66 days
that happened in iteration 1.

By the end of iteration 1, there
were 208 total exposures, 21 of
those were adequate, and 15 of
the exposures caused disease.

Other Ways to Look at Exposure
The results set seems clear, but we can look at
the exposures in other ways to understand
more.

Using the Supplemental Output File
Daily Exposures gives more details. This is
daily_exposures_1, which matches iteration 1.

The reason code “Ini” on day 0 refers to the
initial infection of the index herd, Unit 19, is
that this was specified by the user.

On day 5, Unit 19 had direct contact with Unit
1808, causing infection.

On day 6, Unit 1808 had direct contact with
Unit 1818, causing infection. The data will
continue if exposures and infections happen in
the simulation.

This is the network of disease spread.
A clarification on the Daily Exposures file -
Where “infection” is noted, the meaning is actually adequate exposure.

Learning More from Daily_Exposures
Since we have a nice view of this data, there are a few
more things to point out.

Day 9 has many exposures and no infections. Why not?
Perhaps the exposure was not adequate. Also, Unit
1808 and Unit 1818 are already infected, so those units
won’t get infected again.

The exposure count on Day 9 doesn’t match the query
(shown on page 44). Why are there more exposures in
the query? The Supplemental Output File is not going
to show Airborne Spread unless it is adequate to cause
disease. Airborne Spread creates a massive number of
exposures and it would make huge output files.
Instead, the next step will be looking at spread by
contact method and that will show the details.

Another hint from this file is that zone names do not
appear until Day 11. That is a clue that detection didn’t
happen until Day 10 to trigger zone formation. There
are ways you can double-check detection in other
variables.

The iterations under 1, 2, 3, 4 and
5 allow you to view the
production type level data of the
first 5 iterations that completed.

A Final Note on Daily_Exposures

The Sample Scenario is very simple. In a
more complex scenario, there is a possibility
for more complex interactions.

It is possible for two different source units to
have an exposure with the same destination
unit on the same day.

In the simulation engine, a decision will be
made to generate an adequate exposure.
However, the output would not clarify which
source caused the infection. The adequate
infection record has null values related to
the source unit as a result of this possibility.

The iterations under 1, 2, 3, 4 and
5 allow you to view the
production type level data of the
first 5 iterations that completed.

Details for Routes of Exposure
Copy and paste this query into your SQL window if you want hands-on experience. Remember to use the Sample
Scenario with Outputs, or any scenario that has been run.

Note that Production_Type_id was
dropped out. Having a field with no
value doesn’t tell us much once we
understand why it is blank.

SELECT iteration,
Day,
Last_day,
production_type_id, -- not useful, use case to get name
CASE WHEN name IS NULL THEN "ALL" ELSE name END as productiontype,
expcU,
expcUDir,
expcUInd,
expcUAir,
adqcU,
infcU
FROM Results_DailybyProductionType r
LEFT JOIN -- needed since one side of join can be null
ScenarioCreator_productiontype pt
ON r.production_type_id = pt.id
WHERE 1=1
AND production_type_id IS NULL -- only pulling back combined production type records
AND iteration = 1 -- just look as one iteration to start
ORDER BY 1, 2 -- don't assume order is correct

Raw Data for Exposure with Cause, Adequate and Infection Methods of Spread

The results from the previous page query look like this. You can determine which of your contact
methods are causing the most spread.

Airborne is now included, and
the total count is clearer.

Between days 8 and 9,
6 exposures happened, but
only one of those
exposures was adequate.
Also, no more infections
happen, so the exposure
must have been to the
Unit that was already
infected.

Note About Infection
Understanding how infection is counted in the raw data is complicated. Since infection happens on one day and the disease state
transition occurs on the next day, there are opportunities for several situations that can add complexity.

Most of the cases are added in a straightforward fashion:

day n: one or more adequate exposures happen
day n+1: unit changes to infected state
This situation is clear: if there is one susceptible unit that became infected on day n, we add 1 to infcU.

However, there are some cases where an infection on day n does not lead to a state change on day n+1.

Specifically, the count varies when a unit is both infected and vaccinated on day n (with the days to immunity parameter set to zero-
day delay) or both infected and destroyed on day n. In those cases, the change of state would never show up in the daily_states
output on day n+1.

In these situations, the simulation engine takes an action that is not visible. It "flips a coin" and may or may not add 1 to infcU.

Wait a minute! Something is missing

When you created parameters, you decided:
• the production types that can be contacted by other

production types
• How often the production types contact each other
• The methods by which the production types come into

contact

There must be more details, right?

The first three queries were designed to be preliminary
steps to review the data, by collapsing the records so that
only the combined production type record is showing.
The next steps break down the results and show more
details about production types.

Danielle Lynn Moonshine Ranch

Query for Exposure, Adequate Exposure, and Infection
Methods of Spread by Production Type

Copy and paste this query
into your SQL window if
you want hands-on
experience. Remember to
use Sample Scenario with
Outputs, or any scenario
that has been run.

Earlier, we dropped
Production_Type_id, and
now we need it back.

SELECT iteration,
Day,
Last_day,
production_type_id, -- not useful, use case to get name
CASE WHEN name IS NULL THEN "ALL" ELSE name END as productiontype,
expcU, -- adqcU, -- leaving out adq, because model doesn’t return this detail
infcU , infcUDir, infcUInd, infcUAir
FROM Results_DailybyProductionType r
LEFT JOIN -- needed since one side of join can be null
ScenarioCreator_productiontype pt
ON r.production_type_id = pt.id
WHERE 1=1
AND production_type_id IS NOT NULL -- only pulling back specific production type records
AND iteration = 1 -- just look as one iteration to start
ORDER BY 1, 2 -- don't assume order is correct

Raw Data for Exposure, Adequate Exposure, and
Infection Methods of Spread by Production Type
This is the dataset from the previous page query. You can determine which of your contact methods are
causing the most spread, and in which production types that spread is occurring.

Notice the row count
doubled, because there are
two production types.

Disease spread in this
iteration occurs mainly in
cattle, until Day 16 when it
spreads to swine by airborne
exposure.

The Parameters Explain the Story

In ADSM, all the parameters are in the
individual tabs associated with each type of
spread.

It is possible to open each one of these and
research every parameter block individually.

There is no reason to open every one of these
blocks when we have access to the data
behind the application. The correct query will
get us an answer with less hassle. The query
is a little more complicated. It stacks results
from direct spread and indirect spread
together.

You’ve got this. You are a query professional
at this point!

The iterations under 1, 2, 3, 4 and
5 allow you to view the
production type level data of the
first 5 iterations that completed.

Evaluation of Spread
These tools provide a way to look at how spread is occurring, and which production types are being affected. Do these
results make sense based on the Sample Scenario parameter inputs? We will check parameters next.

The last day of the
outbreak is a good
place to evaluate
this question

Most of the infection was caused by
direct contact from Cattle to Cattle

A small amount was caused by
the other methods of contact

Query for Direct and Indirect Disease Spread Parameters

Copy and paste this query
into your SQL window if
you want hands-on
experience. You can use
this query on any database,
as it is not looking at
results. SELECT 'direct spread' as Spreadmethod, Name,

CASE WHEN use_fixed_contact_rate = 0 THEN 'No' ELSE 'Yes' END use_fixed_contact_rate,
Contact_rate, infection_probability ,
CASE WHEN latent_units_can_infect_others = 0 THEN 'No' ELSE 'Yes' END as latent_units_can_infect_others,
CASE WHEN subclinical_units_can_infect_others = 0 THEN 'No' ELSE 'Yes' END as subclinical_units_can_infect_others
FROM ScenarioCreator_directspread ds
LEFT JOIN (SELECT id, name as distance_pdf FROM ScenarioCreator_probabilitydensityfunction) dd
ON ds.distance_distribution_id = dd.id
LEFT JOIN (SELECT id, name as movement_control_pdf FROM ScenarioCreator_probabilitydensityfunction) mc
ON ds.movement_control_id = mc.id
UNION
SELECT 'indirect spread' Spreadmethod,
Name,
CASE WHEN use_fixed_contact_rate = 0 THEN 'No' ELSE 'Yes' END use_fixed_contact_rate,
Contact_rate, infection_probability,
'Not possible', -- latent_units_can_infect_others,
CASE WHEN subclinical_units_can_infect_others = 0 THEN 'No' ELSE 'Yes' END subclinical_units_can_infect_others
FROM ScenarioCreator_indirectspread ids
LEFT JOIN (SELECT id, name as distance_pdf FROM ScenarioCreator_probabilitydensityfunction) dd
ON ids.distance_distribution_id = dd.id
LEFT JOIN (SELECT id, name as movement_control_pdf FROM ScenarioCreator_probabilitydensityfunction) mc
ON ids.movement_control_id = mc.id

Raw Data for Parameters for Direct and Indirect Spread
This is the dataset from the previous page query. You can determine which of your contact methods were parameterized to cause the
most spread, and in which production types.

Now that we can see the parameters, it does make sense that Cattle > Cattle Direct Spread caused the most infections;
the contact rate multiplied by the infection probability is highest for that route of spread.

Using a meaningful naming convention on the spread methods helps make this example clear. Name is user-defined.

Query for Airborne Disease Spread Parameters

Copy and paste this query
into your SQL window if
you want hands-on
experience. Remember to
use Sample Scenario with
Outputs, or any scenario
that has been run.

Here is where you can note
the effect of turning on the
airborne exponential decay
parameter.

SELECT
'airborne spread' as SpreadMethod,
asp.name,
Spread_1km_probability, max_distance as max_distance_km,
'and is',
CASE WHEN Use_airborne_exponential_decay = 0
THEN 'in effect due to linear airborne decay'
ELSE 'not in effect due to linear airborne decay'
END as max
FROM ScenarioCreator_airbornespread asp
JOIN
ScenarioCreator_disease d ON
d.id = asp._disease_id

Raw Data for Parameters for Airborne Spread

This is the dataset from the previous page query. You can determine how airborne spread was parameterized.

From these parameters we would expect that cattle, as compared to swine, are more likely to contribute to airborne
spread of disease to any susceptible production type and that 6 km is the maximum distance that airborne spread can
occur between an infectious and susceptible premises.

Query for Exposure, Adequate Exposure and Infection Methods of Spread by
Production Type for Last Day All Iterations

After walking through the
steps for looking at one
iteration, let’s expand and
look at the last day only but
look across all 10 iterations

Copy and paste this query
into your SQL window if
you want hands-on
experience. Remember to
use Sample Scenario with
Outputs, or any scenario
that has been run.

SELECT iteration,
Day, Last_day,
CASE WHEN name IS NULL THEN "ALL" ELSE name END as productiontype,
expcU,expcUDir, expcUInd, expcUAir,
adqcU,
infcU, infcUDir, infcUInd, infcUAir
FROM Results_DailybyProductionType r
LEFT JOIN -- needed since one side of join can be null
ScenarioCreator_productiontype pt
ON r.production_type_id = pt.id
WHERE 1=1
AND last_day = 1 -- Last day is true
AND production_type_id IS NOT NULL -- pulling back specific production type records
-- AND iteration = 1 -- all iterations – turns off this clause
ORDER BY 1, 2 -- don't assume order is correct

Raw Data for 10 Iterations Airborne
This is the dataset from the previous page query. Note that last_day now = True. There are a range of outcomes, as expected with the
stochastic nature of the simulation. Recall here that the query output is looking at the recipients of the contact. Does the evaluation
hold true when looking at more iterations?

This query shows that more cattle units than swine units are exposed and infected by airborne spread. To get an idea of
which production types are the source of airborne contacts, see the daily exposures output file.

Validation Check-in
We have looked at exposure, adequate exposure, and infection in several ways. We have also
checked the parameters. So far, my simulation is providing the results I would expect from the
parameters that I put in.

 In the next step, the Supplemental Output files will provide additional information.

Supplemental Output Files – Daily States

Since we have been looking at the routes of
infection, let’s look at the Supplemental Output File
with the daily disease state. In this case, we will
look at states_1.csv to stay with the iteration 1
example.

Supplemental Output Files – Daily States

Unit 19 is the index herd. This is a good opportunity for a
verification step. This view allows verification of the steps in
the disease progression. The first thing I want to know is the
production types of my units.

Quick Hint – The production type information is on the
Population tab, but instead just open Daily_events_1.csv file,
because most of these units trigger events almost immediately.

Image from Daily_Events_1 and all units are cattle.

Supplemental Output Files – Daily States

Unit 19 is L (Latent) 8 days. On the 9th day it
changes to B (subclinical).

Unit 1808 is L (Latent) 1 day. On the 2nd day it
becomes B (subclinical).

Unit 1818 is L (Latent) 4 days. On the 5th day it
becomes B (subclinical).

Unit 1830 is L (Latent) 3 days. On the 4th day it
becomes B (subclinical).

Unit 458 is L (Latent) 3 days. On the 4th day it
becomes B (subclinical).

The probability density function assigned to the
latent stage in cattle is named Latent period – cattle
and is Triangular, 0, 3, 9.

The values for the latent period days in cattle units
(8, 1, 4, 3, 3) fall within the expected range of the
probability density function (0 – 9 days) with most
of the time lasting 3 days. This is a small example of
making sure the model is doing what we expect.

states_1 file probability density function

Controls

Now that we have a better understanding of how disease is spreading, let’s look at how the
control measures are behaving.

Just a reminder: If destruction is
checked in main Control
Protocol, then destruction will
happen for detected units. The
additional settings in destruction
put in additional units, either
because of a trace or because of
pre-emptive destruction in a
ring. Note that Control Protocols
are assigned to one or more
production types.

Assessing Detection
There are several ways we can explore detection.

At a high level, using the Results_DailyControls table, it is possible
to simply determine with a y/n flag the day detection occurred
with the field detOccurred.

At a daily level, using the Results_DailybyProductionType table, there are multiple fields
reporting on detection.

At the herd and daily level, using the Supplemental Output File
Daily_events, you can see a detailed list of detection events.

SELECT iteration,
Day, DetOccurred
FROM Results_DailyControls
WHERE 1=1
AND last_day = 1
ORDER BY 1, 2

Query for Detection

Copy and paste this query into
the SQL window if you want
hands-on experience.
Remember to use Sample
Scenario with Outputs, or any
scenario that has been run.

There’s another thing we did in
the SQL code. Using the
keyword as, the field named
Iteration was renamed to IT.
This is called an alias. You can
alias field names and table
names. We automatically did it
on table names to reduce the
amount of code needed in the
ON statement.

SELECT iteration as IT, Day, Last_day,
CASE WHEN name IS NULL THEN "ALL" ELSE name END as productiontype,
infcU, -- infection by Unit
detcU, -- all detection by unit
detcUClin, -- detection by clinical exam (default method of detection)
detcUTest -- detection by laboratory testing (option method of detection)
-- First Detection
firstDetection, firstDetectionClin, firstDetectionTest
FROM Results_DailybyProductionType r
LEFT JOIN -- needed since one side of join can be null
ScenarioCreator_productiontype pt
ON r.production_type_id = pt.id
WHERE 1=1
AND production_type_id IS NULL -- pulling back combined production type records
AND iteration = 1 -- one iteration
ORDER BY 1, 2 -- don't assume order is correct

Detection Raw Data
Look at what happens in the raw data as the outbreak proceeds.

Day 5 Infection starts to spread

Day 10 Detection happens

Day 10 First Detection is stamped onto the record

Note some of the fieldnames were shortened to fit everything into one view

Detection Raw Data
By the last day, the raw data looks like this.

Something seems wrong with this.
How are there more detections than
infections?

After initial detection anywhere in
the population, contact tracing may
occur. Traced units may be examined
for clinical signs and/or tested. Just
as in real life, both of those
processes could identify infection in
the same unit. When this occurs, the
model records both events as
detections. This makes it appear that
detections were over-counted. Note some of the fieldnames were shortened to fit everything into one view

FirstDetection field is still showing the day of first detection.

Query for Detection on Last Day
Is infection always detected?

Looking at 10 iterations
provides a variety of results to
see the stochastic nature of
the model. In iteration 1, all
infections appeared to be
detected, but if we look at
other iterations there are
different outcomes. In this
query, results are limited to
the last day.

Copy and paste this query into
the SQL window if you want
hands-on experience.
Remember to use Sample
Scenario with Outputs, or any
scenario that has been run.

SELECT iteration, Day, Last_day,
CASE WHEN name IS NULL THEN "ALL" ELSE name END as productiontype,
infcU, -- infection cumulative by Unit
detcU -- detection cumulative by unit
FROM Results_DailybyProductionType r
LEFT JOIN -- needed since one side of join can be null
ScenarioCreator_productiontype pt
ON r.production_type_id = pt.id
WHERE 1=1
AND production_type_id IS NULL -- pulling back combined production type records
AND last_day = 1
ORDER BY 1, 2 -- don't assume order is correct

Detection Raw Data Last Day

There were several
iterations that had fewer
detections than infections.

Why did iteration 9 have 1
detection when there were
0 infections? The index unit
was detected.

What happens to those
units that are not detected?
The Supplemental Output
file states_2 will show the
state.

Iteration 2 is an example. In
states_2.csv on Day 64, Unit
1845 changes to N (Natural
Immune) as it is never
detected.

Query for Destruction as a Control Measure

Destruction is another
common control measure
used in animal disease
outbreaks. An evaluation
of depopulation’s
effectiveness may also
reveal something about
the scenario.

Copy and paste this query into
the SQL window if you want
hands-on experience.
Remember to use Sample
Scenario with Outputs, or any
scenario that has been run.

SELECT iteration, Day, Last_day,
CASE WHEN name IS NULL THEN "ALL" ELSE name END as productiontype,
infcU, -- infection cumulative by Unit
detcU, -- detection cumulative by unit
FirstDestruction,
descU -- destruction cumulative by Unit
FROM Results_DailybyProductionType r
LEFT JOIN -- needed since one side of join can be null
ScenarioCreator_productiontype pt
ON r.production_type_id = pt.id
WHERE 1=1
AND production_type_id IS NULL -- pulling back combined production type records
AND iteration = 1
ORDER BY 1, 2 -- don't assume order is correct

Raw Data for Destruction as a Control Measure
For Iteration 1
First detection happened on Day 10.

On Day 16, destruction starts. Recall that
detection must happen before the model
knows to destroy the unit. Once a
detection has occurred, there are three
main options:
1) Destroy the detected unit
2) Destroy a trace-in or out
3) Make a pre-emptive destruction ring

The Supplemental Output file
Daily_events_1 shows exactly who was
destroyed.

Note some of the fieldnames were shortened to fit everything into one view

Destruction Delay Verification
This is another opportunity to verify that the parameters are guiding the model’s action.

Recall detection didn’t happen until Day 10.

On Day 16, destruction starts. Recall that detection
must happen before the model knows to destroy the
unit. The parameter Destruction Program Delay is
set to 5 days. Therefore, a Day 10 detection with a
Day 16 destruction makes sense in iteration 1.

Summary of Evaluation Steps
1. At the beginning, we looked at duration and number of animals

on infected premises at first detection
2. Then we ventured into Exposures

- Exposure, Adequate Exposure, and Infection
- Exposure, Adequate Exposure, and Infection by spread method
- Exposure, Adequate, and Infection by production type

3. Spread parameters
4. Daily States
5. Detection
6. Destruction

Depending on the specifics of your scenario there may be other
variables, like those related to vaccination, that you should explore.

The Data Dictionary can provide field level definitions. Use the ? Panel in the ADSM application to find the Data Dictionary.

What’s Next?

Join the flock!
Learn more about ADSM or try an example

ADSM is currently available at https://github.com/NAVADMC/ADSM/releases/latest

Try the sample scenario
https://github.com/NAVADMC/ADSM/wiki/A-Quick-Start-Guide:-Running-the-sample-scenario

Read the wiki pages link
https://github.com/NAVADMC/ADSM/wiki

https://github.com/NAVADMC/ADSM/releases/latest
https://github.com/NAVADMC/ADSM/wiki/A-Quick-Start-Guide:-Running-the-sample-scenario
https://github.com/NAVADMC/ADSM/wiki

Additional training materials will be posted at
http://navadmc.github.io/ADSM/

Training includes:
 Overview
 Populations and Production Types
 Getting Started
 Disease Parameters
 Control Parameters
 Output Settings and Run
 Results
 Detailed Evaluation of Results - Verification and Validation
 Vaccination Strategy
 Administration

http://navadmc.github.io/ADSM/

The outcome of an ADSM simulation (as with any computer simulation model) depends heavily on the quality of the
scenario input parameters; the assumptions of the modeler who created the scenario; and the capabilities and
limitations of the model framework itself. The utility of disease models like those created with ADSM critically depends
on input and interpretation of experts familiar with the behavior of disease within populations, and with the
limitations, assumptions, and output of the model. While ADSM is available as a service to animal health
communities, the ADSM team does not necessarily endorse results obtained with the ADSM application or any
conclusions drawn from such results. Note that the parameters provided in the Sample Scenario are simple examples
to clarify concepts in the application. These parameters do not represent any real population or disease event.

This work was funded in whole through Cooperative Agreement AP18VSCEAH00C005 with
the University of Tennessee Department of Animal Science by the Animal and Plant
Health Inspection Service, an agency of the United States Department of Agriculture.

Photo credits
Canva.com
Pinecroft Farms, Woodstock CT, Mariah Chapman
Dr. Melissa Ackerman
Dr. T Halasa
Ali Abo Kareem Photography
Mariposa Ranch Watusi
Dr. Renee Dewell
Danielle Lynn Moonshine Ranch

	Animal Disease Spread Model
	Detailed Evaluation of Results
	Table of Contents
	Document Conventions
	Results Evaluation
	Sniff Test
	Quality of parameters
	Accurate and credible
	Verification
	Verification definition
	Verification team
	Validation
	Validation definition
	Known vs unknown
	How do you compare to the real world?
	Validation thoughts
	Validation concept
	Validation: Some Helpful References
	View of complex system
	ADSM outputs
	Example
	Example using Sample Scenario
	Review a small subset
	Review Results Home
	Sample Scenario Population Heat Map
	Additional outputs
	Random seed disabled in Sample Scenario
	High Level Indicators
	Query view
	Output tables in the database
	Additional Helpful Tables
	A Helpful Hint
	Another Helpful Hint
	Raw Data for Duration and Infected at First Detection query
	Raw Data for Duration and Infected at First Detection results
	Raw Data for Duration and Infected at First Detection
	Duration and Infected at First Detection
	Understanding Exposures - 10 Iterations
	What is adequate exposure?
	Raw Data for Exposure, Adequate Exposure, and Infection query
	Raw Data for Exposure, Adequate Exposure, and Infection results
	Raw Data for Exposure, Adequate Exposure, and Infection analysis
	Other Ways to Look at Exposure
	Learning More from Daily_Exposures
	A Final Note on Daily_Exposures
	Details for Routes of Exposure
	Raw Data for Exposure with Cause, Adequate and Infection Methods of Spread
	Note About Infection
	Wait a minute! Something is missing
	Query for Exposure, Adequate Exposure, and Infection Methods of Spread by Production Type
	Raw Data for Exposure, Adequate Exposure, and Infection Methods of Spread by Production Type
	The Parameters Explain the Story
	Evaluation of Spread
	Query for Direct and Indirect Disease Spread Parameters
	Raw Data for Parameters for Direct and Indirect Spread
	Query for Airborne Disease Spread Parameters
	Raw Data for Parameters for Airborne Spread
	Query for Exposure, Adequate Exposure and Infection Methods of Spread by Production Type for Last Day All Iterations
	Raw Data for 10 Iterations Airborne
	Validation Check-in
	Supplemental Output Files – Daily States
	Supplemental Output Files – Daily States analysis
	Supplemental Output Files – Daily States�Values and parameter view
	Controls
	Assessing Detection
	Query for Detection
	Detection Raw Data
	Detection Raw Data analysis
	Query for Detection on Last Day
	Detection Raw Data Last Day
	Query for Destruction as a Control Measure
	Raw Data for Destruction as a Control Measure
	Destruction Delay Verification
	Summary of Evaluation Steps
	What’s Next?
	Join the flock
	Additional training
	Disclaimer
	Funding Statement

