Animal Disease Spread Model (ADSM) Text Support Document for Training

The slide-based training was designed to optimize visual interest. This format does not always create a slide bank that is printer friendly. In some sections, there are many images and little text. This text support document is intended to be a printer-friendly version of the slides that can be used as a reference. This document is not intended to take the place of the main training slides.

Training 4 Disease

Slide	Image	Text
1	Laying Hens	Animal Disease Spread Model
-	1001	Defining Disease
2	ADSM	Table of Contents
	Application	Disease Description
	Sample	Disease Progression
	Scenario with	Disease Spread
	Outputs	Review and Confirm
		What's Next
3	No Image	Document Conventions
		The following conventions are used throughout the training modules:
		TRAINING MODULES other than the one you are current in will use
		all capital letters, bold face, italics and underline.
		Rhetorical questions and extra notes will be in orange italics.
		Conventions applying to the ADSM application are:
		Navigation tabs on right and Admin panels on left are designated with
		an underline. Examples are <u>Project Panel</u> or <u>Population tab.</u>
		Items with an action on click, such as [Apply] Button or [Save As] icon
		are enclosed in square brackets.
		Parameter fields (inputs) are in blue italics and Variables (outputs) are
		in green italics.
		<u>Navigation Tabs</u> > Parameter field indicates to go to the given
		navigation tab to find the given field.
		Hyperlinks appear in bright green type with underline
4		http://navadmc.github.io/ADSM/
4	Gear Section	Disease Description
-	Break	
5	Feedlot cattle	Describing a disease in ADSM
		ADSM is very flexible for simulating highly infectious diseases.
		Because many users may create models for a number of diseases, it
		is important that a name is provided to accurately describe the
		disease of interest.
		Photo credit Dr. Liesel Schneider
6	ADSM	On the Disease tab, the name field must be completed to proceed to
	Disease	the next sections, as noted by the yellow highlight. It may also be
	navigation tab	helpful to provide a short description of the disease.

7	Coor Section	Airborne Spread When a disease can be spread by tiny particles carried in air currents or aerosolized respiratory droplets, it is considered an airborne transmitted disease . The default setting in ADSM is a linear decay, which requires entry of a parameter of the maximum distance of spread. As appropriate, you can select the option airborne exponential decay to be simulated instead. Within Unit Prevalence You may prefer using within-unit prevalence, which is the average daily prevalence within a single unit. Within-unit prevalence requires adding a prevalence parameter by production type on the Disease Progression tab. If this option is left unselected, ADSM uses the infection probability at the production type level on the Disease Spread tab. Be sure to select [Apply] to save the changes.
7	Gear Section Break	Disease Progression
8	Feedlot Cattle	Disease States Used in ADSM Susceptible: A disease state characterized by the capacity of a unit to become infected. Units in this disease state are neither infected, naturally immune, nor vaccine immune. Latent: A disease state characterized by the period that elapses between exposure to a disease agent and onset of infectiousness (shedding of disease agent). Sub-clinically infectious: A disease state in which there is an absence of clinical signs, but the disease agent is being shed. Clinically infectious: A disease state characterized by the presence of clinical signs and shedding of the disease agent. Immune: A disease state in which units are immune due to natural progression through the disease states (i.e., previous exposure to the pathogen) or vaccination. <i>All disease states in ADSM are considered at the farm or unit level.</i>
9	Image of disease transition states	Disease Progression - Describing Disease States in ADSM As described in the population file, units (individual farms) are initially defined as susceptible, latent, sub-clinical, clinical, naturally immune, vaccine immune, or destroyed. Probability density functions characterize the time period for each disease state. The number of days for the disease state is selected randomly for each new infection from the range of possible values within the function.
10	Cattle on range	Herd immunity We define herd immunity as the resistance to the spread of a contagious disease within a population that results if a sufficiently high proportion of individuals are immune to the disease. Herd immunity decreases the risk of disease in a population. The risk of infection in susceptible individuals is greatly reduced by surrounding them with immune individuals. In ADSM, immunity at the unit level can be achieved either by natural exposure or through vaccination.
11	ADSM disease	ADSM requires you to define each stage of disease progression to fully capture the entire process of infection within a unit. Within each
L		

	· · · ·	
	progression navigation tab	disease state, you may use unique probability density functions to describe the range of possible values. The user-named probability density functions are then assigned to each state to mimic biological disease progression.
12	ADSM disease progression navigation tab, close up	With adequate time, infected units will progress into the immune state unless they are destroyed. You may bypass a specific disease state and progress to the subsequent state by setting its duration to 0 days. In this example, the <i>Subclinical period</i> parameter is set to a Fixed Value of 0.
13	ADSM Assign disease progression navigation tab,	Use the drop-down tabs to assign the specific progression function to each disease state for each production type. Be sure to [Apply] to save the changes.
14	Gear Section Break	Disease Spread
15	Images of disease spread mechanisms (mixed species, fomites, airborne plume example)	ADSM simulates three types of contact that may spread disease: Direct Contact Indirect Contact Airborne Contact Photo Credit - Dr. Danelle Bickett-Weddle Ross Dynamics Lab (plume modeling)
16	Image of cattle on range	 Definitions Related to Disease Spread Direct contact: The movement of animals within units (premises, section, pen) or from one unit to another unit with animals. Indirect contact: The movement of people, vehicles, equipment, etc. from one premises to another premises with animals. Direct transmission: The transfer of a disease agent by direct or close contact. Indirect transmission: The transfer of disease agent via movement of personnel, vehicles, equipment, etc. Airborne transmission: The distribution of microbial aerosols consisting partially or completely of microorganisms which can be drawn into lung alveoli. This type includes transmission by droplet nuclei and dust. Fomites: Inanimate objects that when contaminated with infectious agents can transfer disease to a new host. Vectors: Any organism (vertebrate or invertebrate) that functions as a carrier of an infectious agent between organisms of a different species. Mechanical vs biological transmission: In mechanical transmission, the disease agent does not replicate or develop in/on the vector but in biological transmission, the agent replicates and/or develops in it. Photo credit - Dr. Liesel Schneider

	1	
17	Image of feedlot cattle	 Additional considerations regarding disease spread Latent cases can be a source of infection in direct disease spread.
		 Simulation results are achieved at the herd level, not at individual level.
		 Production types differ in their susceptibility and can greatly influence the results of a simulation.
		Photo credit - Dr. Liesel Schneider
18	Image of	Direct Spread
	cattle on range	Within ADSM, parameters associated with direct spread of disease include the contact rate, infection probability, and distance distribution. These direct contact measures consider different production types and movement control.
		Direct contact measures the movement of one or more animals from one herd to another. These are assigned within ADSM by selecting a production type as the source of the animal movement, and one or more production types as the recipient of the animal movement. Photo credit - Dr. Liesel Schneider
19	ADSM Direct	Direct Spread
	spread center	To begin, create a name to accurately describe the production type-
	panel	to-production type spread. In this example, we are considering cattle-
		to-cattle direct spread.
		With these production types and the disease of interest in mind, you
		would then determine if latent and/or subclinical units can infect other
20	luce and of	susceptible units and check the boxes as appropriate.
20	Image of cattle on range and	Disease is spread from one unit to another in one of two ways: -If within-unit prevalence is used, the function selected generates the infection probability.
	ADSM	-Alternately, another option is contact rate and the probability of
	contact rate	infection transmission, which are set for each pair of production types.
	and infection	A <i>contact rate</i> is used to indicate the average number of contacts
	probability	(shipments of animals in the case of direct contact, or movements of
	parameters	people, equipment, etc., for indirect contact) that are generated by
		each unit on each day.
		You must set the <i>probability of infection</i> within disease spread. This is the probability that a contact will result in disease transmission. You
		can also think of this as the likelihood of an effective contact.
21	ADSM	The <i>distance distribution</i> uses a probability density function. ADSM
	Sample	supports 22 general types of probability density functions (pdf).
	Scenario	Some distributions are more suitable to certain applications than
	distance	others, but ADSM provides a selection to ensure maximum flexibility
	distribution	to model users. The red bar indicates that an edit has been made.
	and function view	Use [Apply] to save changes.
22	ADSM	Assign source of transmission to destination
	Sample	Open the spread after you have saved. Be sure that you are selecting
	Scenario	source and destinations. Even though the name already specifies
	contact	this, the name is only labeling it, not assigning it.
	source to	You can add multiple destinations to each production type. These selections automatically save the changes.

	destination assignment	Swine is not a source in this spread from cattle to cattle; therefore, it is empty.
23	Image of calf getting ear tag	Indirect Spread Disease can indirectly spread in many ways. Disease agents can spread by movement of animals, people, farm equipment, and vehicles. Within ADSM, indirect spread is modeled like direct spread, considering the same potential parameters of contact rate, infection probability, distance, and movement control. Contact rates between production types can be calculated for each time unit (e.g., daily), or they can use a fixed contact rate throughout the disease simulation period. When applying values to these parameters, you consider the likelihood of indirect contacts from production type to production type. Photo credit - Dr. Liesel Schneider
24	Image of cattle loading on to trailer and ADSM Indirect spread center panel	For each susceptible unit, ADSM stochastically calculates a number of outgoing shipments using a pdf to represent movement control.
25	Image of feedlot and infection probability parameter	Infection probability for indirect spread You must set the probability of infection within indirect disease spread. This is the probability that a contact will result in disease transmission. This can also be thought of as the likelihood of an effective contact.
26	Image of cattle on range	 Airborne disease spread Airborne spread is the process of spreading a disease agent through the air. If appropriate for the disease agent you want to model, ADSM can simulate airborne disease spread. Susceptible animals can become infected through inhalation. All species may pose varying likelihoods for emitting virus in the form of aerosols. Additionally, susceptibility to air droplets also differs by production types. ADSM uses exponential or linear algorithms to simulate airborne disease spread.
27	ADSM Sample Scenario linear spread parameters	Airborne Disease Spread – Linear Decay The probability of airborne disease spread is calculated within a 1km area of the farm, with a maximum distance indicated. As in direct and indirect disease spread, you determine the source and destination for disease spread (e.g., Swine > All). To set the spread at a constant probability within the max distance, select "all probable production types" in the Destinations field.
28	ADSM Sample Scenario exponential	Airborne Disease Spread – Exponential Decay The probability of airborne disease spread is calculated within a 1km area of the farm.

	spread parameters	As in direct and indirect disease spread, the user determines the source and destination for disease spread (i.e. Swine > All). To set the spread at a constant probability within the max distance, select "all probable production types" in the Destinations field.
29	Image of cattle on range and wind direction parameters	Airborne Disease Spread – Wind Direction To adequately describe airborne transmission, ADSM allows you to enter the directionality of the spread. In this image, we have set our <i>exposure direction start</i> at 0 degrees (North) and <i>exposure direction</i> <i>end</i> at 360 degrees. This example allows a full rotational effect to mimic local area spread. If a directional wind is more appropriate, this can be applied as well.
30	Gear Section Break	Review and Confirm
31	ADMS Sample Scenario Review Disease Spread	ADSM provides a review step for easy visualization of the methods of contact and disease spread between production types. You can use the contact method matrix on the <u>Review Disease</u> <u>Spread tab</u> to see a summary of the connections between production types that were parameterized in the model. If you are not seeing colored blocks on this tab, you have failed to make a source to destination assignment. <i>How many possible spread options are there?</i> Number of production types (2) x Number of production types (2) x Spread methods (3)
32	ADMS Sample Scenario Review Disease Spread	 = 12 possible spread options for a simple example! Review Disease Spread Brown represents [direct] contact Green represents [indirect] contact Blue represents [airborne] spread White [All] indicates that no spread has been assigned Every row is a source and every column is a destination. If a correction is needed, you can return to a specific parameter block by clicking on it.
33	ADMS complex example Review Disease Spread	With more production types, the interaction becomes much more complex. Here is a complex example. Number of production types (12) X Number of production types (12) X Spread methods (3) = 432 possible spread possibilities
34	ADMS complex example Review Disease Spread direct only	In this view, only direct spread is showing. The white space allows you to see if you have failed to select a Production Type Combination in the <u>Disease Spread tab</u> .
35	Image of goats	Review Disease Spread If any disease contact combinations are missing

		Go back to the individual disease spread option and add it in with the probability of disease spread for that combination.
36	Cattle on range	Summary In this training we have covered Production type specific disease and transmission parameters. This training also included the definition of how one production type (source) is connected to another production type (destination). NAHMS Archives – Judy Rodriguez
37	Gear Section Break	What's Next
38	Image of bull	Parameters related to control measures will be covered in the next training.
39	Image of flock of Sheep	Join the flock! Learn more about ADSM or try an example ADSM is currently available at https://github.com/NAVADMC/ADSM/releases/latest Try the sample scenario https://github.com/NAVADMC/ADSM/wiki/A-Quick-Start-Guide:- Running-the-sample-scenario Read the wiki pages link https://github.com/NAVADMC/ADSM/wiki
40	Goat on with green foliage	What's Next? Training materials are posted at <u>http://navadmc.github.io/ADSM/</u> Training includes: Overview Populations and Production Types Getting Started Disease Parameters Control Parameters Output Settings and Run Results Detailed Evaluation of Results - Verification and Validation Vaccination Strategy Administration
41	Cows grazing with blue sky and green grass	The outcome of an ADSM simulation (as with any computer simulation model) depends heavily on the quality of the scenario input parameters; the assumptions of the modeler who created the scenario; and the capabilities and limitations of the model framework itself. The utility of disease models like those created with ADSM critically depends on input and interpretation of experts familiar with the behavior of disease within populations, and with the limitations, assumptions, and output of the model. While ADSM is available as a service to animal health communities, the ADSM team does not necessarily endorse results obtained with the ADSM application or any conclusions drawn from such results. Note that the parameters provided in the Sample Scenario are simple examples to clarify concepts in the application. These parameters do not represent any real population or disease event.
42	Cattle image	This work was funded in whole through Cooperative Agreement AP18VSCEAH00C005 by the Animal and Plant Health Inspection Service, an agency of the United States Department of Agriculture.

	University of Tennessee Animal Science logo Photo credits Canva.com Pinecroft Farms, Woodstock CT, Mariah Chapman Ross Dynamics Lab (plume modeling) www.agweb.com Dr. Liesel Schneider Dr. Danelle Bickett-Weddle Ken Rager Photography Nadine Grand-Maison
Metadata	Last Update: 1/2/2024 By: Schoenbaum Approved: Freifeld